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Abstract

We examine whether a diagnosis contingent incentive contract structure improves the treat-
ment of malaria, and whether it’s best to target those incentives to patients or providers. The
contract provides incentives to use rapid tests (RDTs) to diagnose patient malaria status com-
bined with incentives to treat with antimalarial drugs (ACTs) if the patient tests positive but
not if negative. Using data from a cluster randomized field experiment with 140 pharmacies in
malaria endemic regions of Kenya, we find that both patient subsidies and provider incentives
significantly increased RDT testing uptake. Absent incentives, 87% of suspected malaria pa-
tients purchase ACTs, of which as many as 66% are doing so unnecessarily because they do not
have malaria. The incentives lead to an increase RDT test use by 25 pp, a 7 pp increase in the
purchase of ACTs by malaria positive patients, and a 27 pp decline in the purchase of ACTs by
malaria negative patients. The contract increases (decreases) ACTs for those who are malaria
positive (negative) through both improved diagnostic information and incentives. Diagnosis-
contingent contracts are highly cost effective, actually lowering the cost per malaria positive
person being treated by reducing the unnecessary treatment of malaria negative patients.
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1 Introduction

Central to the provision of medical care, and a defining feature of health care markets, are

the separate but interdependent roles of diagnosis and treatment (Arrow 1963). Patients

depend on the judgement of more knowledgeable medical care professionals to diagnose

their medical conditions and to recommend appropriate treatments. Appropriate treatment,

in turn, depends on an accurate diagnosis, which uses information from laboratory tests,

imaging and other assessments that require time, effort and costly technology. That is,

diagnosis is a complement to treatment in the production of health care and health. .

Despite the importance of diagnosis, most existing theoretical and empirical models of

medical care provider behavior do not specify diagnosis and treatment as separate decisions

(see e.g. McGuire 2000 for a review). This leaves a critical gap in understanding supply

and demand for health care because patient and provider beliefs about both the need for

care and how effectively they can treat a patient depend on the quality of the diagnosis

(Chandra, Cutler, and Song 2011).1 This gap extends to payment and incentive designs that

bundle diagnosis and treatment, either explicitly or implicitly, by paying in either some form

of fee-for-service (FFS) or fixed payment (e.g. diagnostic related groups or DRGs).

In this paper, we propose and test a novel incentive structure that separately pays for di-

agnostic effort and for treatment contingent on diagnosis for the case of malaria. Specifically,

we use a diagnosis-contingent contract structure that provides incentives to first increase

the use rapid diagnostic tests (RDTs) to determine if a patient is malaria positive.2 Sec-

ond, the contract provides additional incentives to treat using front-line anti-malarial drugs

(Artemisinin Combination Therapies – ACTs) only if the patient tests positive for malaria

parasites. The contract encourages appropriate treatment both through generating diagnos-

tic information about illness status (i.e. malaria positive or negative) from the RDT and

1. Novel diagnostic technologies that are both more effective at diagnosis and also match specific individ-
uals to specific treatments — so-called precision medicine — make understanding the diagnostic process of
particular interest (Stern, Alexander, and Chandra 2017).

2. RDTs are highly accurate tests that use a finger prick to confirm the presence or absence of malaria
parasites in a patient’s blood.
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through the diagnosis contingent financial incentives for ACT use. This way the incentive

contract both encourages appropriate treatment and discourages unnecessary treatment.

We begin by presenting a model of consumer demand for malaria testing, and introduce

diagnosis-contingent contracts to demonstrate the mechanisms driving contract design as

well as explore the conditions under which we expect such contracts to improve welfare. We

show that contracts that reduce the price of ACTs conditional on a positive test result are

more cost-effective in boosting testing uptake especially when patients overestimate their

probability of being malaria-positive. Those patients are more responsive to the level of

diagnosis-contingent ACT discount, inducing greater take-up of ACTs for precisely the pop-

ulation where testing is most valuable. At the same time, because the actual probability of

being malaria positive is low, the expected direct costs of the contract are minimal. Finally,

our model illustrates how contracts that target the provider’s incentives increase uptake. If

providers pass through the discounts the results are equivalent to demand. This standard

result ignores a key channel: information provision. Provider incentives can induce costly

effort to inform patients. Testing contingent contract incentivize providers to counsel pa-

tients and to do so accurately by encouraging testing followed by treatment only if a test is

positive.

Having developed the theory of diagnosis contingent contracts, we use a cluster random-

ized field experiment (RCT) to estimate the effect of the diagnosis contingent incentives on

malaria testing and treatment decisions. We further investigate whether incentives are more

effective when they are given to patients through subsidies (demand-side) or to providers

through performance incentives (supply-side), or a combination of the two.

We also examine the mechanisms through which the incentives work by leveraging data

from Standardized Patient visits, which allows us to examine behavioral channels of impact

without the confounding effects of patient selection. We are, therefore, able to explore

whether the effect of the incentives contract on treatment (ACT use) is driven by diagnostic

information (i.e. malaria status) versus financial incentives.
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Malaria is an important disease to study clinical decision-making because it is a well-

understood illness, it has a high disease burden, and nearly all deaths and serious illness are

preventable through effective and inexpensive medication (WHO 2021). Despite RDTs being

cheap and readily available, less than 10% of patients presenting with malaria symptoms are

diagnosed with RDTs or other parasitic tests prior to getting treated.3 This may explain why

large shares of malaria-positive patients go untreated while large shares of malaria-negative

patients receive antimalarial medication (Cohen et al. 2013; Cohen, Dupas, and Schaner

2015; O’Meara et al. 2016; Ansah et al. 2010).4 Low diagnostic testing contributes to a gap

between treatment and need; missed diagnoses result in more severe avoidable illness and

over-prescription of anti-malaria drugs to malaria-negative patients can lead to heightened

drug resistance in the population. In the absence of diagnostic information it is perhaps not

surprising that we see large over- and under-treatment for malaria. If providers were aware

of their patients’ malaria status, treatment could be far better tailored.

We explore these issues in high malaria prevalence counties in Kenya, where over 3.5

million people fall ill with malaria annually. The study population lives near Lake Victoria

and on the coast, areas that are most vulnerable to infection (Initiative 2021; Disease Control

and Prevention 2018). Over half of malaria patients in Kenya and across East Africa access

treatment via pharmacies, often the preferred access point for primary care given pharmacies’

convenience and reliable presence even in areas that are under-served by public health care

clinics and hospitals (Musuva et al. 2017; Burton et al. 2011).

We randomized 140 pharmacies into either a status quo control group or one of three

treatment groups, each with a two-part incentive: (1) patient subsidies for RDT tests and

3. The literature identifies several potential reasons as to why diagnostic testing is low. Patients may
not demand tests because of (i) strong prior beliefs about their malaria status – i.e., a low perceived value
of information from testing (Maffioli et al. 2019), (ii) the cost of the test is prohibitive (Cohen, Dupas,
and Schaner 2015; O’Meara et al. 2018), and (iii) they do not want to wait for the diagnostic test result
– i.e., impatience. Moreover, providers may not prescribe a test prior to treatment because (i) they have
established practices of symptom-based diagnosis – i.e., established norms and habits (Mbonye et al. 2013),
(ii) they are optimizing perceived patient preferences (Lopez, Sautmann, and Schaner 2022), and (iii) they
have profit motives (Currie, Lin, and Meng 2014).

4. Over- and under-treatment are ubiquitous worldwide with implications for both health care cost and
health outcomes (Das and Hammer 2014; Whitehead, Dahlgren, and Evans 2001).
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for the anti-malarial drugs (Artemisinin Combination Therapies – ACTs) conditional on a

positive test; (2) pharmacy performance incentives for RDT tests, and for prescribing ACTs

conditional on a positive test; and (3) combined incentives (patient subsidies and pharmacy

incentives) for RDT and ACTs for confirmed malaria-positive cases. The total value of the

incentives was held constant across the three intervention arms. This design allowed us

to evaluate the impact of a two-part incentive structure where payouts depend on the full

continuum of care (and diagnostic information) as well as to examine the causal effect of

targeting that incentive to the patient versus the provider.5

We find that both patient subsidies and provider incentives are effective at increasing

RDT uptake and at improving targeting treatment to malaria-positive patients. Patient

subsidies increase the likelihood that a symptomatic patient takes a RDT test by 27 per-

centage points over a control group rate of 8 percent.6 The impact of pharmacy incentives are

statistically indistinguishable, increasing the likelihood of RDT uptake by a point estimate

of 20 percentage points.

Absent any interventions, 87% of suspected malaria patients purchase ACTs, of which as

many as 66% are doing so unnecessarily because they do not have malaria. This represents

a high baseline level of medication waste. We find that the incentives lead to an overall

decline in ACT usage of 14 percentage points, that incentives increase the likelihood that a

patient purchases ACTs combined with a diagnostic test by 7 percentage points, and that

incentives lead to large declines (16-22 percentage points) in the likelihood that patients

purchase malaria treatment without a diagnostic test.

The increase in ACT purchase is concentrated among those that find out that they are

malaria positive from the RDT, while the reduction in ACT use is driven by patients who

5. Prior literature has studied the impact of demand-side subsidies, but not provider incentives, on malaria
care, finding them to be effective at improving testing but not at improving test result adherence (Cohen,
Dupas, and Schaner 2015; O’Meara et al. 2016; O’Meara et al. 2018). To our knowledge, at the time of
writing, one other ongoing study compares patient and provider incentives in pharmacy-settings (Visser
et al. 2024).

6. This result is consistent with what has been found in prior literature on consumer subsidies for for
RDTs and other health goods.(Dupas 2014; Cohen, Dupas, and Schaner 2015)
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find out that they they are malaria-negative from the RDT and elect to forego unnecessary

antimalarial purchases. However, the reduction in ACT purchase among those that get tested

and find out they are malaria negative is larger in the treatment groups but not in the control

group. This suggests that the reduction in ACT purchase is driven by a combination of

patient specific diagnosis information and incentives. We also find that diagnosis contingent

contracts improve efficiency even for those untested. We see a reduction in ACT purchase

among those that do not get tested in the treatment groups, driven by improved information

provision from providers who are incentivized not to push a "diagnosis" of malaria positive

without confirmation from a test.

We find that patient subsidies result in significantly lower RDT prices (43%) but none

of the provider incentives were passed through to clients in terms of lower prices. Instead,

provider incentives were associated with pharmacists giving more explanation of RDT results

and counseling on treatment based on the test results. Both contracts have the same impact

on ultimate demand for both testing and ACT treatments but financial incentives seemed

to work through an information and advice pathway when targeted to providers whereas

demand subsidies induced more patients to purchase RDTs that provided accurate illness

status information leading to more appropriate use of RDTs and ACTs. Both patient and

provider incentives led to fewer instances of providers telling patients who chose not to test

that they were malaria positive and should purchase ACTs.

The diagnosis contingent incentive contracts are extremely cost-effective, largely due to

the fact that they led to substantial reductions in malaria-negative patients taking unneces-

sary antimalarial drugs. The outcome of interest is the marginal cost of an additional malaria

positive patient appropriately treated with ACTs. Costs not only include the direct cost of

treatment but also the costs of over-treating malaria negative patients and the time costs

for patient seeking care. We find that the patient subsidy and the provider performance in-

centive interventions are significantly cost-saving, relative to the control group. This means

that the diagnosis contingent contracts are actually cost-saving.
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This paper relates to a number of different literatures. We directly contribute to work

on performance-based financing mechanisms that reward providers for both quantity and

quality of health services delivered by paying for key outputs (Basinga et al. 2011; Gertler,

Giovagnoli, and Martinez 2014; Ahmed et al. 2023; Yip et al. 2014; Peabody et al. 2014;

Witter et al. 2012; Miller and Babiarz 2013). These studies suggest that properly incentiviz-

ing providers can lead to improvements in health care utilization and key health outcomes,

but the evidence has been limited to a relatively narrow set of indicators and outcomes. Ad-

ditionally, the literature on performance incentives focuses on the price effects, but ignores

mechanisms through which incentives operate. Our study provides evidence on behavioral

channels through which provider performance incentives may impact quality.

Second, we contribute to these two strands of literature by innovating in how health

financing contracts are structured. Conditional cash transfers for preventive health visits,

for example, incentivize health care utilization by lowering the cost of care to patients. In

the US, insurance products that have modest copays or deductibles operate in the same way

- by lowering the price patients pay. These examples, as well as other demand-side incentives

for healthcare, highlight how these financing models typically operate - they reimburse a flat

rate for services used through lower prices/copays (Arrow 1963; Pauly 1980; McGuire 2000;

Cutler and Zeckhauser 2000).

Performance pay models that reward providers either directly through bonuses tied to ser-

vices provided (see e.g.Basinga et al. 2011; Gertler, Giovagnoli, and Martinez 2014; Ahmed

et al. 2023; Yip et al. 2014; Peabody et al. 2014; Witter et al. 2012; Miller and Babiarz

2013) for examples) or indirectly through capitation have a similar structure. Payments are

typically made based on services provided, and do not explicitly take into account diagnostic

information when setting copays for various services.7 This fits in with other literatures on

performance pay based on outcomes, including applications for medical doctors and teachers

(Campbell et al. 2009; Prendergast 1999; Podgursky and Springer 2007).Financial incen-

7. Though, of course, we acknowledge that patients with different medical needs will pay different amounts
for their care because services needed will be diagnosis-dependent.
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tives are well-established tools used around the world to promote a wide range of health

behaviors. Typically, demand and supply side incentives are studied independently, in this

paper we compare them directly and put the two literatures in conversation with each other.

Demand-side incentives all operate based on the assumption that either price itself is a

barrier to adopting a health behavior, or an incentive can nudge people to overcome other

non-pecuniary barriers. Price experiments for health treatments have shown that people do

not respond uniformly to prices, and instead the nature of the health decision and timing

of the benefits affect demand elasticity (Dupas and Miguel 2017; Dow, White, and Bertozzi

2016; Dupas 2014; Cohen, Dupas, and Schaner 2015; O’Meara et al. 2016).

Third, it adds to the literature on how personalized health information and financial

incentives can be combined to change health behavior. Information combined with financial

incentives has shown more promise in encouraging health behavior adoption (Meredith et

al. 2013; Ma et al. 2014; Dupas 2011). But, the quality of the information matters: general

health information tends to be less effective in changing individual behaviors than individ-

ually tailored messages targeted at the key decision-makers (Gong 2015). Studies that have

examined whether information provided by a malaria diagnostic test changes treatment-

seeking behavior have found mixed results – information is effective in steering some pa-

tients towards appropriate treatment options, especially when coupled with an incentive,

but many elect to ignore test results when making treatment decisions (Cohen, Dupas, and

Schaner 2015; O’Meara et al. 2018). This study leverages the two steps of the testing and

treatment decision by providing a financial incentive for treatment conditional on the per-

sonalized health information provided by the test. We test the extent to which appropriate

malaria treatment use is a result of information (RDT result) or an added financial incentive

(for ACT), contributing to the long literature on the role of information and information

asymmetries in health decision-making (Arrow 1963).

Finally, we contribute to the broader literature studying how incentives targeted at the

demand-side or the supply-side can affect prices and demand (e.g. Busse, Silva-Risso, and
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Zettelmeyer 2006). We also contribute to this conversation in the health economics literature.

2 Model

In this section we develop a simple model to elucidate the rationale for our diagnosis-

contingent contract design. We begin with a model of patient demand for RDT testing.

Using the derived demand we characterize our diagnosis contingent contract and explore the

impact on demand and outcomes. We demonstrate the efficiency of a diagnosis contingent

contract relative to direct subsides (e.g. for RDTs alone). We then turn to the joint decision

process between the patient and the provider and explore the role of diagnosis contingent

contracts in information provision and treatment decisions.

2.1 Patient demand for RDTs

We allow for two sequential choices, presented in figure 1. First, the patient decides whether

or not to to test for malaria. Second, the patient must decide whether to purchase an

antimalarial medication. Patient demand depends on malaria status M ∈ {m,m′} with

probability of malaria P (m), or some other health condition causing the symptoms with

probability P (m′), such that P (m) = 1−P (m′). The value of treatment (receiving an ACT)

depends on true health status.

The patient’s realized utility depends on their true malaria status M ∈ {m,m′} and

whether they consume an antimalarial. If the patient is malaria positive and left untreated,

they receive a disutility −dm. Similarly, if the patient is malaria negative, the patient has

disutility dm′ from the non-malaria condition. Receiving unnecessary malaria treatment leads

to a disutility represented by −dw, in addition to the unnecessary expenditure on treatment.

For instance, side effects from antimalarials, the true underlying condition staying untreated

for longer, and malaria resistance concerns can affect the value of dw.

Patients choose whether to buy an ACT and pay price pa to receive malaria treatment.
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We write expected utility with and without ACT purchase as:

E(U) =


ACT −pa − P (m′)(dm′ + dw)

No ACT −P (m′)dm′ − P (m)dm

(1)

Without the purchase of an RDT, true malaria status M is uncertain. If the patient buys

an ACT, they will avoid the dis-utility of having untreated malaria, but they will have a

probability P (m′) of incurring a dis-utility for inappropriate treatment. If the patient does

not buy the ACT, the patient has probability P (m) of incurring disutility dm from having

untreated malaria

We first assume that E(U(ACT)) > E(U(No ACT)). That is, for the observed patients,

consuming ACT will always be optimal under uncertainty. This assumption implies that the

disutility dm is sufficiently large that a patient with malaria-presenting symptoms will always

chose to receive an anti-malarial treatment when their status M is uncertain.8 Therefore,

the patient’s value of not testing is given by:

E(U(No RDT)) = −pa − P (m′)(dm′ + dw) (2)

Patients, on the other hand, have the option to purchase an RDT test for price pr which

will inform them on their status M , that is, P (m|RDT positive) = 1 and P (m|RDT negative) =

0. We assume that buying an ACT and an RDT is feasible for the patients (i.e. pa + pr <

B for the patient’s healthcare budget B).

We further assume that if a patient knows they are malaria positive after incurring cost pr,

then the patient will purchase an ACT. This follows from the assumptions that patient will

purchase an ACT under uncertainty and that they can afford both a RDT and ACT. Both

assumptions are consitent with what we observed in the data.9. Moreover, since RDTs are

assumed to remove the patient’s uncertainty on their malaria status, if an RDT is negative,

8. This assumption holds in our sample, since we only observe patients that make a Malaria purchase –
that is, if a patient does not purchase an RDT, they purchase an ACT.

9. The probability of buying an ACT if the patient tested positive is > 95%
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the patient should not purchase an antimalarial.10

We can now write the patient’s value of purchasing an RDT as:

E(U(RDT)) = −pr − P (m)pa − P (m′)dm′ (3)

Because patients purchase an ACT after buying an RDT if they test positive, the patient’s

value of RDTs depends on the price of both products. RDTs do, however, guarantee that

the patient will not incur disutility dw, and allows for the possibility of avoiding unnecessary

expenditures on antimalarial treatments.

Combining 2 and 3 together, the patient buys an RDT if and only if:

E(U(RDT)) > E(U(No RDT))

⇐⇒ −pr − P (m)pa − P (m′)dm′ > −pa − P (m′)(dm′ + dw) (4)

⇐⇒ P (m′)(pa + dw) > pr

Equation 4 describes the patient’s optimality condition for the purchase of RDTs. The

decision to purchase an RDT depends on 4 values key values: the patient’s beliefs about their

malaria status, the patient’s perceived disutility of incorrectly receiving malaria treatment,

and the prices of both RDTs and ACTs. We express demand for RDTs as:

D(pa, pr) = P (P (m′|i)(pa + dw,i)− pr > 0) (5)

where P (m′|i)(pa+dw,i) is a random variable reflecting individual i′s beliefs about malaria

risk and disutility from receiving unnecessary ACT treatment when they are malaria neg-

ative. Moreover, since the demand is a cumulative density function, this expression yields

simple comparative statistics. Demand is increasing on the price of the ACT and the pa-

10. Again, this is consistent with our data since the probability of buying an ACT after testing negative is
5%.
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tient’s beliefs about P (m′) and dw, and decreasing on the price of the RDT:

∂D(pa, pr)

∂pa
> 0

∂D(pa, pr)

∂pr
< 0

∂D(pa, pr)

∂P (m′|i)
> 0

∂D(pa, pr)

∂dw,i

> 0

2.2 Patient diagnosis contingent contracts

Our model of demand for diagnosis in hand we turn to contract design. A diagnosis con-

tingent contract simply reduces the price of the ACT that the patient pays conditional on

the patient testing and the outcome of that test. We express an ACT with discounted price

as p∗a|r = (1 − δa)pa < pa available only if the patient purchases an RDT through the con-

tract’s program. Parameter δa describes the relative size of the discount. The patient can

continue to purchase the ACT without an RDT at market price pa. We extend this by

reducing the cost of the RDT test by δ percent. The discounted price for RDTs is given by

p∗r = (1− δr)pr < pr for discount rate δr and market price pr. Under a diagnosis contingent

contract, the patient’s optimality condition becomes:

pa − P (m)p∗a|r + P (m′)dw > p∗r

⇐⇒ pa − P (m)(1− δa)pa + P (m′)dw > p∗r (6)

⇐⇒ (1− P (m)(1− δa))pa + P (m′)dw > (1− δr)pr

When δr = δa = 0, this condition is identical to equation 4. When δr ∈ [0, 1] and
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δa ∈ [0, 1], the comparative statistics implied by equation 4 continue to hold. However,

patient demand for RDTs is now increasing on the discounts δr and δa:

∂D(pa, pr, δa, δr)

∂δr
> 0

∂D(pa, pr, δa, δr)

∂δa
> 0

Diagnostic contingent contract structures that target prices paid by patients for both

testing and treatment based on the outcome of the test, increase demand for malaria testing

and preventing unnecessary treatments. When deciding whether to test, patients not only

care about the price of the RDT, but also about the cost of treatment. Our proposed contract

increases demand for testing through changes in the price of the both products. A lower price

for RDTs increases demand for testing. Second, a conditional discount on ACTs indirectly

increasing the value that testing by making the expected cost of testing positive lower.

Patient diagnostic contingent contracts lead to more patients receiving optimal treat-

ments, as summarized in figure 1. Contracts improve welfare when beliefs are unbiased

about dw and P (m′). Gains are even large when patients underestimate the true value of

these parameters since the subsidies will correct under-demand for RCTs (akin to “internali-

ties" (Baicker, Mullainathan, and Schwartzstein 2015)). Baseline demand is consistnet with

systematic underestimates for the value of testing based on the large gap between demand

for RDTs and clinical guidelines.

An important additional benefit of diagnosis contigent contracts is the reduction in un-

necessary malaria treatments for those who are not sick. This directly improves patients’

utility by avoiding dw from receiving unnecessary malaria treatments. The social value is

potentially far larger. Unnecessary malaria treatments have the potential to increase malar-

ial resistance in the community imposing an important externality due to under testing.

12



Such externalities imply a gap between the private value of dw and social value of preventing

malaria resistance.

2.3 Cost-effectiveness of patient diagnosis contingent contracts

A key question is why introducing a diagnosis contingent discount on ACT prices would be

preferred over direct RDT price reductions? There are several advantages to conditional

discounts on ACTs. Depending on the parameter values for the patient demand, diagnosis

contingent discounts on ACTs can prove more cost-effective than direct discounts on RDT

prices when the policy goal is to increase RDT uptake. Moreover, alternative policy goals

also make the use of diagnosis contingent contracts more attractive.

If the main policy goal is increasing the uptake of RDTs, ACTs price-reductions can be

more cost-effective than RDT discounts. To see why this is the case, consider the marginal

effect on patient demand from changes to discounted prices for ACTs and RDTs, holding

the market price constant. For exposition purposes, assume that all patients have the same

perceived probability of being malaria positive P (m|i) = A. This leads to:

∂D(pa, pr, p
∗
r, p

∗
a|r)

∂p∗r
= −D′(pa, pr, p

∗
r, p

∗
a|r) (7)

∂D(pa, pr, p
∗
r, p

∗
a|r)

∂p∗a|r
= −P (m|i)D′(pa, pr, p

∗
r, p

∗
a|r) = −A ∗D′(pa, pr, p

∗
r, p

∗
a|r) (8)

As observed in equations 7 and 8, patients are more responsive to changes in the price of

the RDT than changes in the price of the ACT by a factor of 1/A ∈ [1, inf). However, the

real cost of the program is influenced by the true probability that a given patient is malaria

positive — P (m). For an RDT discount, the per patient program cost will be on expectation

(pr−p∗r)D(pa, pr, p
∗
r, p

∗
a|r), while for a conditional ACT discount the expected cost per patient

will be P (m)(pa−p∗a|r)D(pa, pr, p
∗
r, p

∗
a|r). This is because the program only pays for the ACT

subsidy when a patient is malaria positive. Hence, if the true probability of being malaria

13



positive is sufficiently low relative to the patients’ beliefs, conditional ACT subsidies can

be more cost-effective. To see why, note that as the belief A → 1, the marginal effect of

a conditional ACT discount approaches the marginal effect of RDT discounts. However, as

P (m) → 0, the expected per patient cost of the conditional ACT discount will approach

zero.

In addition to the cost-effectiveness argument presented above, diagnosis contingent con-

tracts for ACTs can be an attractive policy tool for social planners that want to increase the

affordability of malaria treatments while avoiding unnecessary medical expenditures. This is

particularly relevant in LMICs where the status quo often includes unconditional subsidies

for ACTs. Transitioning from unconditional ACT discounts to diagnosis contingent contracts

can prove a useful strategy to achieve these policy objectives.

2.4 The role of the provider’s counseling on RDT demand

Providers counsel malaria suspect patients on the value of testing. For simplicity, assume

that providers can signal the value of testing to the patient through θ ∈ {0, 1}, whether

the provider recommends to be tested or not. Patients update their beliefs about the true

value of P (m) and dw based on the provider’s counseling, with functions given by dw,i(θ)

and P (m|θ, i).

If a provider recommends a test θ = 1, it is likely that the patient will interpret this as a

signal that either P (m′) or dw are high, or equivalently, that the value of testing is high. If

this is the case, then the provider’s recommendation to test increases the demand for RDTs:

D(pa, pr|θ = 1)−D(pa, pr|θ = 0) > 0 (9)

Provider’s motivations to recommend testing are potentially twofold. On one hand,

providers care about the patient’s welfare and the potential for increasing malaria resistance
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with unecessary treatments. On the other hand, providers might care about their financial

incentives. For concreteness, let the provider’s decision to recommend testing be given by:

θ = 1{W (dw, P (m), pr, pa, δr, δa) + λf(m, t) > ed} (10)

Such that W (dw, P (m), pr, pa, δr, δa) is a function that represents the provider’s internal-

ized patient’s welfare and concerns about malaria resistance in their community, and f(m, t)

represents the provider’s financial incentives to recommend testing. The provider’s financial

incentives are a function of the vector of markups m for all the malaria products sold in the

pharmacy and a vector of any incentives included in the diagnosis contingent contracts (t).

In particular:

f(m, t) = E[π|θ = 1]− E[π|θ = 0] (11)

= Σk(mk + tk)(P [k|θ = 1]− P [k|θ = 0])

Such that π are the provider’s expected profits from a malaria counseling interaction with

the patient. These profits depend on the probability of patients deciding to buy product

k ∈ {r, a, a|r} conditional on their advice to the patient. The provider’s incentives include

direct transfers to the provider from the diagnosis contingent contract, and the markups of

the pharmacy for the sale of the distinct available products.

2.5 Provider diagnosis contingent contracts

Provider diagnosis contingent contracts change the financial incentive structure from the sale

of the malaria products, encouraging providers to recommend testing. In particular, these

contracts increase mk + tk for k ∈ {r, a|r}. Since θ is likely to be positively correlated with

the patient’s beliefs about the value of testing, the probabilities that patients buy an RDT

(r) or an ACT conditional on an RDT sale (a|r) should both be increasing on θ. In other
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words, P [r|θ = 1] − P [r|θ = 0] > 0 and P [{a|r}|θ = 1] − P [{a|r}|θ = 0] > 0. Therefore,

provider diagnostic contingent contracts increase the provider’s incentives to recommend

testing f(m, t), and thus, potentially increase demand for testing by the patient.

If the patient underestimates the true value of testing, contracts that target provider

incentives to recommend RDTs should be welfare improving to the patient when prices are

held constant. Moreover, similar to the patient diagnostic contingent contracts, we expect

the provider counterparts to increase social welfare far and beyond the patient’s welfare if

the private value of testing does not fully incorporate the social cost of preventing malaria

resistance in the community.

3 Experimental Design

The study randomized 140 pharmacies into 4 groups – 3 intervention groups and a control

group. The three treatment arms are (Appendix Table C1):

1. Patient subsidy group (T1): Clients who seek care for suspected malaria cases at these

pharmacies pay a subsidized price for RDTs (90% subsidy, a 10 Kes copay) and a

subsidized price for ACTs (80% subsidy, a 30 Kes copay) conditional on a confirmed

positive malaria diagnosis. The prices are advertised in large posters in prominent

spots in the pharmacy.

2. Pharmacy incentive group (T2): Pharmacy owners receive an incentive to sell RDTs

(90 Kes), and an additional incentive to prescribe ACTs to malaria-positive patients

(80 Kes). Pharmacy attendants receive a 30 Kes incentive for recording transaction

information in the malaria case management platform and completing the sale of in-

centivized products. Pharmacies are free to set prices charged to patients.

3. Combined group (T3): Clients are eligible for discounted rapid tests (60% subsidy, a 40

Kes copay) and discounted ACTs conditional on a positive test result (60% subsidy, a 60
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Kes copay). Pharmacy owners receive an incentive to sell rapid tests (15 Kes), and an

additional incentive to prescribe ACTs to malaria-positive patients (15 Kes). Pharmacy

attendants receive a 30 Kes incentive for recording transaction information in the

malaria case management platform and completing the sale of incentivized products.

Pharmacies are free to set prices charged to patients.

The of the total value of the incentive was held fixed at 200 Kes (~$2 USD in 2021 exchange

rates) across all treatment arms.11

The pharmacies participating in the study are existing users of Maisha Meds’s digital

sales management platform. Maisha Meds is a Kisumu-based healthcare social enterprise that

provides sales and inventory management support to small pharmacies and clinics throughout

Kenya. The platform records all pharmacy transactions and product stock. The incentive

interventions were integrated into Maisha Meds’s digital platform and managed centrally by

the Maisha team. Subsidy and incentive amounts were automatically calculated based on

the products that are being bought/sold and verified by implementation staff independent

of the pharmacies prior to disbursement to ensure implementation fidelity.

Pharmacy staff received training on the importance of diagnostic testing (all arms),

proper RDT administration, and use of the malaria case management tool. Stocks of RDTs

and ACTs were provided on consignment through Maisha Meds in the intervention arms,

while in the control group they managed their own stock.

3.1 Sample Enrollment

The sample consists of for-profit pharmacies and the clients that present with malaria symp-

toms located in the thirteen counties in the malaria endemic and epidemic areas of Kenya’s

western regions. These pharmacies manage their own stock and sales of diagnostic tests and

medications. They set their own prices and sell at market prices.

11. The incentive amount is consistent with prior literature, was determined after a pilot phase, and was
calibrated to ensure pharmacy profitability would not be adversely affected, compared to the status quo.
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To be eligible to participate in the study, pharmacies needed to be part of the Maisha

Meds network and active users of the Maisha Meds digital sales and inventory management

platform. Additionally, they had to be licensed pharmacies that were registered with Kenya’s

Pharmacy and Poisons Board. They also had to be willing to be randomized to one of the

study arms, manage their sales through the digital tool, and to offer incentives (either supply-

or demand-side) for malaria testing and treatment if assigned to one of the intervention arms.

All eligible pharmacies were mapped. Those located at least 0.5 km from other potential

study participants were invited to participate.12 Using these criteria 175 pharmacies were

identify as eligible and were invited to participate in the study, of which 140 accepted.13

These 140 pharmacies were randomly assigned to one of the four arms in waves, stratified

on average monthly malaria product sales volumes (above/below median), urban/rural, and

location of pharmacy in lake endemic county. Figure 4 shows the geographic span of the

experiment across the target regions in Kenya and the final selection of pharmacies.

3.2 Data

See Appendix Table C2 for study timeline and a description of the primary sources of data.

The study was initially planned to begin in June 2020, but was delayed due to COVID-19.

The pharmacy onboarding, patient exit survey, standardized patient visits, and control group

testing activities were all done in person following appropriate COVID-19 precautions.14 The

pharmacy baseline surveys were conducted over the phone.

We use the following data sources for analysis:

12. The average distance between study sites is 6.24 km (range of 0.5 km to 46.2 km).
13. Appendix Table C3 reports balance on baseline variables between pharmacies accepted (in sample) and

those that declined (refusals). Facilities that declined to participate had been using the digital sales platform
for longer than facilities in the sample frame. No other meaningful imbalances were found.

14. The research and implementation teams followed Kenyan and UC Berkeley CPHS guidelines for con-
ducting research while keeping study staff, implementation staff, and study subjects safe from COVID-19.
All personnel and pharmacy staff were required to wear masks, maintain 1 meter distance from each other,
and sanitize hands frequently. The research and implementation teams provided adequate PPE and hand
sanitizer for all study and implementation personnel. Pharmacies were required by the Kenyan govern-
ment to have all staff wearing masks, and have hand washing stations for staff and pharmacy clients, and
pharmacies in our sample were compliant with these requirements during the study period.
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1. Baseline data:

(a) Pharmacy owner survey: survey about number of staff, pharmacy business opera-

tions, patient volumes, pharmacy characteristics, costs and revenues, and knowl-

edge of malaria case management.

(b) Pharmacy staff survey: survey about malaria case management knowledge, worker

motivation, and use of the digital platform used to manage sales and inventory.

2. Administrative data:

(a) Sales data: continuously collected transaction data including prices and quantities

of products purchased, location, date, and time of sale, and pharmacy staff who

made the sale for over 50,000 malaria-related patient encounters between June

2021 - February 2022.15

(b) Malaria case management data: continuously collected transaction data on all

rapid test and treatment purchases made through incentive program, including

information on age/gender of patient, rapid test result, prices and quantities of

medications purchased, location, date, and time of sale. Over 8,000 malaria trans-

actions logged between June 2021 - February 2022.

3. Standardized Patient Survey: We employ standardized mystery patients (SP) to mea-

sure the appropriateness of the care delivered using the same clinical case scenario.

We trained individuals (SPs) to present an identical standardized illness case scenario

as real walk-in clients to providers. During encounters with providers, SPs portrayed

real patients presenting a standardized, pre-scripted acute adult malaria case. The SPs

were confirmed to be malaria-negative based on malaria microscopy tests administered

by a reliable, high-quality laboratory before and after the month of field work. SPs and

field work supervisors also monitored any potential symptoms throughout field work;

15. Prices observed in the data are retail prices set by pharmacists in the digital tool.
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all were otherwise healthy. By using trained SPs portraying the same illness case to

generate the care data, we avoid bias from selection on patient illness type and severity

that is inherent in care data collected using other common methods such as patient

exit interviews, direct clinical observation, or health records (Peabody et al. 2000).

4. Patient exit survey data: survey with a random sample of 1654 eligible adult pharmacy

clients across all study sites (12.6 clients/site).16 This survey includes information on

quality of care, symptoms, prices and quantities of medications and diagnostic tests

purchased, beliefs about their illness status, malaria test result if applicable, and basic

demographics.

5. Testing subsample data: data on test positivity from testing of random subset of 230

pharmacy clients at control group sites to obtain test positivity rate in a sample un-

affected by the interventions (8.5 clients tested/site, 28 sites participated). Additional

test positivity data from administrative records from 10 control group pharmacies that

kept records of tests conducted (N=2547) on-site between January-February 2022.

6. Endline data:

(a) Pharmacy owner survey: survey about number of staff, pharmacy business oper-

ations, patient volumes, pharmacy characteristics, costs and revenues, and altru-

istic tendencies.

(b) Pharmacy staff survey: survey on malaria case management knowledge, worker

motivation, use/familiarity with the digital platform used to manage sales and

inventory and manage malaria cases, and altruistic tendencies.

16. In order to be eligible, clients must have sought care for malaria symptoms for themselves or a family
member present at the pharmacy with them. Trained research staff visited each study pharmacy during an
unannounced 5 day period, and screened all patients who exhibited malaria-related symptoms or purchased
malaria products for eligibility. There were 1674 possible respondents screened, and 1654 respondents who
completed the survey.
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3.3 Estimation Methods

All primary analyses are conducted at the patient level.17 For all binary outcomes, we

report marginal treatment effects from adjusted logistic regression models using the following

specification:

Pr(Yip) = expit(β0 + β1T1ip + β2T2ip + β3T3ip + λs +Xp + ϵip) (12)

where Yip is a malaria testing or treatment outcome, Tjip are treatment assignment indicators

for each intervention j for individual i seeking care at pharmacy p, with the control group

as the reference category, λs are strata fixed effects, and ϵip is the error term. We include

variables that had significant imbalance with the control group at the ≤ 10% level at baseline

(Table 1) as covariates in this adjusted model (Xp), as specified in the pre-analysis plan.

The β terms represent the log-odds of the treatment effect of each intervention relative to

the control group, as percentage point changes. However, we report all results in terms of

marginal treatment effects and p-values from Wald tests comparing the marginal treatment

effect coefficients of the interventions to each other. Results of unadjusted models (excluding

Xp) are consistent with findings from the adjusted models, and can be made available upon

request.

4 Sample Balance Across Study Arms

Table 1 reports the experimental balance checks at baseline and shows that randomization

was balanced across a large set of pre-specified covariates. Out of 84 tests conducted, 8 are

significant at the ≤ 10 percent level. When we conduct a joint test for orthogonality using a

multinomial logit model with treatment assignment as the categorical outcome, we find that

the χ2-test produces a p-value of 0.46. This suggests that these covariates are not jointly

17. The analyses specified in this section were pre-registered in a pre-analysis plan (AEARCTR-0004705).
We discuss any deviations from the pre-analysis plan where relevant.
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predictive of group assignment. In the adjusted models, we control for covariates that were

unbalanced at baseline from comparisons with the control group.

5 Results

5.1 RDT Use

Table 2 reports the estimated effects of the incentive interventions on RDT use. As a

reference point, only 8% of patients who sought care for malaria-related symptoms in control

group pharmacies purchased a rapid diagnostic test prior to obtaining treatment, which

is consistent with trends found across the full pharmacy sample prior to the start of the

experiment (Appendix Figure C1) as well as with other existing research on rapid diagnostic

test use in pharmacy settings across East Africa.18 Overall, the incentives increased RDT

use substantially. Patients who sought care in treatment pharmacies across all intervention

arms were 25 percentage points more likely to purchase a diagnostic test (column 1, Table

2). Looking at each incentive arm separately in column 2 we find large and statistically

significant effects in all three arms; patient discounts resulted in a 27 percentage point

increase in RDT uptake, while both the pharmacy incentives and the combination of patient

discounts and pharmacy incentives resulted in a 20 percentage point increase. However,

the differences across arms were not statistically significant from each other. Pharmacy-

administered incentives to either patients or providers lead to more people being tested for

malaria prior to receiving treatment.

5.2 ACT Use

Tables 3 and 4 present results of incentives on overall ACT use and by test result, respectively.

The estimated impacts of the incentives on overall ACT use are reported in Table 3. Despite

18. For example, in Cohen et al. 2013; Cohen, Dupas, and Schaner 2015; O’Meara et al. 2016; Ansah
et al. 2010.
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very limited diagnostic testing in the control group, the vast majority of these patients who

sought care for suspected malaria purchase ACTs (87%). Based on a malaria positivity rate

of 34% derived from the random testing exercise done in the control group, 66% of these

individuals purchase ACTs unnecessarily, suggesting potentially large levels of medication

waste. Overall we find that the incentives caused a statistically significant decrease of 14

percentage points in ACT purchase (column 1), and between 9-15 percentage point decline

when looking at each incentive intervention separately (column 2). Again, the three arms

are not statistically distinguishable from each other.

This overall decline in ACT use is ambiguous without analyzing ACT use with and

without an accompanying diagnostic test. The rest of Table 3 answers the question: how did

changes in testing drive the the overall effect of the incentives on ACT uptake? First, only

6% of the 87% of the patients who purchased ACTs in the control groups also used an RDT.

However, as reported earlier, the incentive interventions increased testing substantially so

that patients learned their malaria status with certainty and got access to discounted ACTs

only if they tested positive. Columns 3 and 4 in Table 3 report the estimated treatment

effects when the dependent variable is redefined as ACT use combined with an RDT test.

Across the three intervention arms, we find a 7 percentage point increase in the share of

patients who purchased ACTs with an accompanying diagnostic test and is consistent with

the overall positive effect of the incentives on RDT testing reported in Table 2. Many of

these newly tested patients learn that they are malaria positive, triggering discounts for ACT

purchase.

Columns 5 and 6 in Table 3 report the estimates when the dependent variable is ACT

use without an RDT. We find an average treatment effect of a 20 percentage point reduction

in ACT uptake without a diagnostic test, with the patient discount group having a -22

percentage point treatment effect, the pharmacy incentive group having a -16 percentage

point treatment effect, and the combination of the patient discounts and pharmacy incentives

having a -18 percentage point treatment effect (again, no statistically significant difference
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across the three arms). This decrease is driven by the reduction in the number of patients

not getting tested and not getting access to the discounted ACT prices.

How much of the effects on ACT uptake are due to the information provided by a diag-

nostic test vs. the ACT subsidy? Table 4 reports the results of a mediation analysis asks how

much of the treatment effect is mediated by testing and the results of those tests. Since we

do not have individual level test outcome data for the full sample but do have test positivity

and negativity rates at the pharmacy level, we aggregate the data and conduct the analyses

at the pharmacy level. Column 1 reports test positivity rates by arm - for the control group,

test positivity was obtained by an independent random testing exercise (unconditional test

results) and administrative pharmacy data, and in the treatment groups positivity rates are

directly observed for individuals who opt into taking an incentivized test. We find differences

in test positivity by treatment arm, suggesting that there is patient selection into incentivized

care that is different by arm. As a result, these analyses are a descriptive decomposition

of the treatment effects and not causal estimates. However, they provide insights into how

much of the treatment effect is explained (a) information about one’s own malaria status,

and (b) an ACT subsidy/incentive on ACT uptake outcomes. Columns 2 and 3 of Table

4 reproduce the main effects on ACT uptake, but do so at the pharmacy-level. Incentive

interventions reduce the share of ACTs sold by 24 percentage points on average (column 1),

with patient discounts reducing by 27 percentage points and pharmacy incentives reducing

by 22 percentage points (column 2), consistent with the individual-level findings.

The rest of the table explores how much of this overall effect is due to information

provided by the RDT versus the conditional financial incentive on ACTs. In columns 4 and

5, we see that conditional on the information provided by the diagnostic test (positivity and

negativity rates), the overall impact on ACT shares is diminished to about a 6 percentage

point decrease overall, and to 4 and 8 percentage point decrease for patient and provider

incentives, respectively. Test negativity rate has a large negative impact on ACT sales, on

average across treatment groups. Columns 6 and 7 interact positivity and negativity rates
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with treatment status, to explore how information affects outcomes by treatment arm. We

find that the effect of information on ACT shares is entirely driven by the information effect

in pharmacies that received incentive interventions (either patient or provider). So, the

information provided by RDTs as a result of the incentive interventions is only being acted

upon for ACT uptake if the information is combined with ACT price incentives.

5.3 Mechanisms

We investigate mechanisms using data from an audit study that employs standardized pa-

tients (SP) to measure the content of the care visit using the same clinical case scenario, with

results in Tables 5-7.19. SPs have an advantage over client exit surveys or administrative

transaction data in our setting as they avoid bias from selection on patient malaria status

(real or perceived). Given that we find differential test positivity rates in the sample of

patients who opt into treatment (TOT) by arm, this suggests that there are different behav-

ioral mechanisms by arm that explain the overall results. The SP data, by capturing data

on an unselected patient sample - where the only variation is by the experimental design -

allows us for cleaner identification of mechanisms.

We trained individuals (SPs) to present an identical standardized illness case scenario

as real walk-in clients to providers. SPs followed a uniform script for how to present a

suspected malaria case in a pharmacy setting: SPs were instructed to complain of fever,

headache and joint pains in their opening statement and then provided additional information

about their illness episode and health history if the pharmacist followed up with additional

questions. SPs conducted a total of 411 visits across 137 facilities in the study sample, with

three different SPs visiting each facility. SP visits provided a unique opportunity to assess

the implementation fidelity and quality of care of the patient-provider interaction at study

pharmacies.

19. SPs have been used to measure quality of care extensively. For example see: Peabody et al. 2000; Das
et al. 2012; Das et al. 2016; Mohanan et al. 2015; Kwan et al. 2018; Kwan et al. 2019; Kwan 2022; Das
et al. 2022; Boone et al. 2023
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Table 5 reports intervention effects on patient prices, as reported in exit surveys. We

find an 18% price reduction for RDTs, across all intervention arms (column 1). In column

2 of Table 5, we see that this price pass-through is driven by the patient discount arm, but

not in the supply-side incentive arms. The discount was reflected in a 43% price reduction

for patients when the incentive was administered as a consumer subsidy (which implies a

price elasticity of demand of 7.86).20 This suggests that in the patient discount arm, the

increase in testing uptake and improvements in treatment targeting can be explained by

reduced patient prices on rapid diagnostic tests. As evidenced by columns 3-6 of this table,

we do not find any effects on pharmacists offering an RDT to SPs (or clients, as reported

through patient exit surveys) as a result of the interventions. Pharmacists in the control

group suggest an RDT to their clients 53%-63% of the time - much higher rates than what

we find in RDT purchases in the control group from the transaction data. This suggests that

absent any interventions, there is a gap between translating suggestion (know) to action (do).

But, this price mechanism does not appear to explain why we find similar effects in the

two supply-side incentive arms. Tables 6 and 7 present results on the pharmacist-patient

interaction using data collected from the SP exit surveys. Table 6 discusses results from the

SP sample on diagnostic testing. We find no impact on the likelihood that the SP took a

malaria diagnostic test (Columns 1 and 2), but the likelihood that SPs who went to control

group pharmacies took a test was already quite high (55%). This is much higher than the

full sample, and is likely due to the fact that the SPs were instructed to present generalized

symptoms and ask the pharmacist for their recommendation, rather than begin by demanding

antimalarials, which is also common practice in these settings. Twenty percent of the SP

sample reported receiving a positive malaria test result, with no differences across arms

(Columns 3 and 4). All SPs were confirmed malaria-negative prior to beginning field work

and monitored during the data collection activity, so these were either true false positives

or provider mis-reports. Given that RDTs have a 94% specificity, the majority of these

20. Using 338% change in quantity, calculated from point estimates in Table 2
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appear to be mis-reported positive results (Mfuh et al. 2019; Wanja et al. 2016). When we

restrict the sample to the SPs who were tested with an RDT (columns 5 and 6), we find

a 36% test positivity rate ( false positives) in the control group, and noisy evidence that

the interventions reduced this. Estimates are large (6-11 percentage point decreases in test

positivity) and noisy (so, are not statistically significant), but suggest that pharmacists may

have been less likely to mis-report malaria positive tests in the intervention arms.

Table 7 shows results from SP data on pharmacist advice and counseling behavior. We

first look at whether the SP reported that the pharmacist advised that they had malaria

at some point during their visit and suggested that they purchase an ACT, based on either

their symptom presentation or a diagnostic test result (columns 1-3). We first look at each

intervention separately, then compare the patient incentives to the pooled provider arms,

and then look at the pooled (any) intervention. In the control group, 46% of SPs reported

that their provider told them that they had malaria and advised an ACT (regardless of

whether or not this was confirmed with a diagnostic test). Incentive interventions reduce

this likelihood by 11 percentage points on average, and by 5-15 percentage points when

looking at each arm separately. This reduction is primarily driven by the untested group of

SPs, suggesting that providers in intervention arms are less likely to engage in moral hazard

by advising the patient that they suspect malaria. We then look at SP reports of whether the

pharmacist comprehensively explained their test result and treatment regimens, a measure

of quality of counseling (columns 4-6). We find that only 31% of SPs in control group

sites report receiving comprehensive information about tests and/or treatment options, and

the incentives significantly improve this (11 percentage points, on average, from column 6).

When looking at the patient and provider incentives separately, we see that the improvements

in counseling are driven entirely by the provider-side incentives (columns 4 and 5). When

pharmacists are incentivized directly, they are 15 percentage points more likely than control

group pharmacists to clearly explain treatment options to SPs (pooling the provider arms,

as in column 5, and looking at them separately, as in column 4). This suggests that when

27



incentivized directly, pharmacists do change their behavior and provide more comprehensive

counseling on testing and treatment options to suspected malaria patients.

Taken together, these results suggest that the information/counseling channel, rather

than a price pass-through, is likely to explain the supply-side treatment effects we find in

Tables 2 - 4.

6 Cost-effectiveness

Finally, we develop a cost-effectiveness framework to quantify the societal costs of over-

treatment with antimalarials and benefits of appropriate malaria treatment targeting from an

implementer and limited societal perspective.21 The framework that we develop for assessing

cost-effectiveness can be extended to other settings that are characterized by diagnostic

testing availability and over-treatment that can have negative social consequences.

In order to analyze the efficiency of each intervention, we conduct a cost-effectiveness

analysis where the measure of interest is the incremental cost per additional patient who

is appropriately treated with ACTs (so, is malaria positive). We use standard formulas to

calculate the ratio of the change in benefits to the change in costs across each intervention

arm compared to the status quo. Benefits are defined as the change in patients taking ACTs

appropriately (patients must be malaria positive), and costs are defined as the sum of the

incentive costs, patient out of pocket costs for tests and treatment, patient time costs of

care-seeking, and the direct costs of over-treating malaria negative patients.

The final cost-benefit ratio formula used is below:

Beneficiariest −Beneficiariesc
TotalCostt − TotalCostc

where t ∈ (1, 2, 3) denotes each treatment arm and c denotes the control group (status

quo). The term Beneficiaries represents the total number of patients who take ACTs ap-

21. For details on the different perspectives one can take in a CEA, see Kim et al. 2020 as an example.
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propriately, and the term Total Cost represents the intervention costs, patient out of pocket

costs for tests and treatments, patient time costs of care-seeking, and the direct costs of

over-treating malaria negative patients. We estimate incremental cost-effectiveness ratios

(ICERs) from the perspective of the program implementer (including only program costs)

and from a limited societal perspective (including program costs, costs incurred by patients

for tests and treatments, time costs of care-seeking, and direct costs of over-treating malaria

negative individuals). Full details on the cost-effectiveness analysis, including all formulas,

assumptions, and data sources for each parameter, can be found in Appendix 7.

Table 8 presents the incremental benefits and ICERs from the implementer perspective

(top panel) and from the limited societal perspective (bottom panel). Within each panel,

we present incremental gains and ICERs for each intervention (patient subsidies, pharmacy

incentives, or combined) relative to the control group, as this is the most policy-relevant

benchmark when deciding amongst these possible intervention approaches. The control

group resulted in 73 appropriately targeted ACTs. Patient subsidies resulted in 180 addi-

tional appropriately targeted ACTs at a cost of $14.30/patient, pharmacy incentives resulted

in an additional 258 patients treated appropriately at a cost of $12.87/patient, and the com-

bined approach resulted in an additional 165 patients treated appropriately at a cost of

$22.72/patient (all from Panel A, Table 8).

From a limited societal perspective (Panel B, Table 8), we find that patient subsi-

dies result in an additional 180 patients treated appropriately with ACTs at a cost of -

$57.60/patient compared to the control group, which is cost-saving. We find that pharmacy

incentives are even more cost saving: compared to the control group, this intervention leads

to 258 additional patients treated appropriately with ACTs at a cost of -$142.14/patient.

And finally, the combined intervention leads to an additional 165 ACTs targeted appropri-

ately compared to the control group, at a cost of $35.92/patient. These cost-effectiveness

estimates may understate the true benefits of these interventions because they do not incor-

porate the benefits incurred by malaria negative patients foregoing unnecessary antimalarials,

29



and thus not contributing to increased likelihood of drug-resistant mosquito strains, which

are a social cost.

7 Discussion

This paper examines the effects of a novel diagnosis-contingent contract structure to improve

malaria case management in a cluster-randomized control trial in Kenya. The experimental

treatments provided financial incentives to patients, pharmacists, or both for RDTs and

ACTs conditional on testing positive for malaria and were implemented in private sector

pharmacies in thirteen malaria-prone counties. By tying financial incentives for treatment

to diagnostic outcome, we propose a flexible innovation in how payment contracts for health

services could be structured to emphasize quality of care rather than service volume.

This paper contributes to the literature on performance-based financing mechanisms by

examining the behavioral channels through which provider incentives impact healthcare qual-

ity. It also innovates in health financing contracts, proposing differential payment structures

based on diagnostic information. Additionally, it explores how combination of personalized

health information and financial incentives influence health behavior. And finally, it adds

to our understanding of how incentives targeted at the demand-side or the supply-side can

affect decision-making.

We find encouraging results of the demand- and supply-side incentives on both testing and

treatment targeting. Overall, the incentives interventions increased RDT use substantially

in a setting with very low baseline testing levels. On average, patients who sought care

in treatment pharmacies were 25 percentage points more likely to receive a formal malaria

diagnosis prior to purchasing treatment for suspected malaria. This represents a more than

300% increase over the control group. Incentive interventions were also effective encouraging

appropriate use of antimalarials. We find an overall 14 percentage point decrease in the use

of ACTs as a result of the treatment, and this is due to malaria negative patients opting
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out of purchasing unnecessary antimalarials. For patients who test positive, we find that

they are appropriately nudged to take ACTs, consistent with their diagnostic test result.

Interestingly, we find statistically indistinguishable effects of the demand-side and supply-

side treatment arms, suggesting that incentives yield similar outcomes whether they are

provided directly to patients or they are provided to pharmacists.

We explore mechanisms through which the incentive interventions worked in order to

contextualize the main findings. We find that the patient subsidies for RDTs resulted in

significantly lower prices being paid by patients (43% reduction in price). However, we find

no evidence of pass-through of the RDT incentive in either of the two supply-side arms, and

no evidence of price pass-through on ACT prices in any of the three treatment arms. Instead,

we find evidence that in the supply-side incentive arms, pharmacists explained diagnosis and

treatment options more comprehensively to their patients. Improved, individualized health

information appears to be the channel through which the supply-side incentives resulted in

the overall changes in RDT and ACT use seen in the main results. In sum, the demand

subsidies induced more patients to purchase RDTs that provided accurate illness status

information, which led to more appropriate use of ACTs. And, the supply-side incentives led

pharmacists to provide more detailed diagnosis counseling and treatment recommendations,

yielding similar overall effects on malaria case management.

Finally, we find that the diagnosis contingent incentive contracts are extremely cost-

effective, largely due to the fact that they led to large reductions in malaria-negative patients

taking unnecessary antimalarial drugs. Taken together, our results imply that diagnosis-

contingent contracts may have the potential to reduce medical waste and curb spending

while better targeting health care resources to areas of proven need.
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Table 1: Baseline Balance Between Treatment Arms (Back: 4)
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Table 2: Impact on rapid test uptake, adjusted logistic regression (Back: 5.1)

Rapid test uptake

(1) (2)

Pooled treatment .25∗∗

(0.051)

Patient discount .267∗

(γT1) (0.106)

Pharmacy incentive .194∗∗

(γT2) (0.065)

Patient discount and .201∗∗

pharmacy incentive (γT3) (0.054)

Control mean 0.081 0.081
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.827
Wald test p-val (γT1 ̸= γT2) 0.540
Wald test p-val (γT1 ̸= γT3) 0.606
Wald test p-val (γT2 ̸= γT3) 0.940
N 51441 51441
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales,
female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ)
between treatment arms
Denominator is all patients that purchased malaria product during study period
45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 3: Impact on ACT uptake and treatment targeting, adjusted logistic regression (Back:
5.2)

ACT uptake
ACT uptake

with test
ACT uptake
without test

(1) (2) (3) (4) (5) (6)

Pooled treatment -.139∗∗ .0748∗ -.197∗∗

(0.049) (0.034) (0.060)

Patient discount -.145∗ .072 -.218∗

(γT1) (0.069) (0.050) (0.110)

Pharmacy incentive -.0892+ .0769+ -.161∗

(γT2) (0.050) (0.045) (0.075)

Patient discount and -.136∗∗ .0511+ -.183∗∗

pharmacy incentive (γT3) (0.047) (0.029) (0.068)

Control mean 0.867 0.867 0.057 0.057 0.809 0.809
Wald test p-val (γT1 ̸= γT2 ̸= γT3) .602 0.839 0.881
Wald test p-val (γT1 ̸= γT2) 0.433 0.938 0.629
Wald test p-val (γT1 ̸= γT3) 0.904 0.710 0.782
Wald test p-val (γT2 ̸= γT3) 0.394 0.587 0.802
N 51486 51486 51486 51486 51441 51441
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales,
female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ) between treatment arms
Denominator is all patients that purchased malaria product during study period
Outcome 3: 45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 4: Impact on ACT sales by test result, pharmacy-level analysis (Back: 5.2)

Test
positivity

rate Share of ACTs sold

(1) (2) (3) (4) (5) (6) (7)

T1 .113∗

(0.054)

T2 .272∗∗

(0.054)

T3 .123∗

(0.054)

Pooled treatment -.235∗∗ -.0643+ .0349
(0.054) (0.038) (0.047)

Patient discount -.27∗∗ -.0377 .0643
(0.064) (0.045) (0.065)

Pharmacy incentives (pooled) -.217∗∗ -.0762+ .0245
(0.057) (0.039) (0.050)

Positivity rate, tested -.108 -.0948 .0917 .0986
(0.091) (0.092) (0.733) (0.736)

Negativity rate, tested -.756∗∗ -.77∗∗ -.101 -.102
(0.058) (0.059) (0.189) (0.190)

Pooled × Positivity -.192
(0.736)

Pooled × Negativity -.711∗∗

(0.196)

Patient × Positivity -.166
(0.760)

Pharmacy × Positivity -.186
(0.741)

Patient × Negativity -.72∗∗

(0.212)

Pharmacy × Negativity -.732∗∗

(0.202)

Control mean 0.072 0.891 0.891 0.891 0.891 0.891 0.891
N 138 132 132 132 132 132 132

Controls: months active on platform, baseline malaria sales, female owner
Wald test comparisons were conducted of difference in marginal effects (γ) between provider & patient arms
Cols 2-7: No significant differences were found between patient and provider arms,
so the p-values for these tests have been omitted from the table.
Analysis at the pharmacy level, outcome in Col 1 is pharmacy-level test positivity rate
outcome in Cols 2-7 is share of ACTs purchased by patients over the study period
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 5: Evidence of incentive pass-through, RDT decision (Back: 5.3)

Log Price of
rapid test SP offered RDT

Patient offered RDT,
exit surveys

(1) (2) (3) (4) (5) (6)

Pooled treatment -.181∗ .0203 .047
(0.088) (0.069) (0.061)

T1 -.427∗ .0205 .0445
(0.174) (0.078) (0.069)

T2 -.0273 -.00128 .0628
(0.094) (0.088) (0.072)

T3 -.0895 .0429 .0254
(0.095) (0.086) (0.077)

Control group mean 2.880 48.952 0.533 0.533 0.628 0.628
Test p-val (γT1 ̸= γT2 ̸= γT3) 0.089 0.884 0.873
Test p-val (γT1 ̸= γT2) 0.028 0.791 0.768
Test p-val (γT1 ̸= γT3) 0.066 0.781 0.787
Test p-val (γT2 ̸= γT3) 0.548 0.620 0.607
N 137 137 411 411 1654 1635
Standard errors in parentheses
Col 1 & 2: Facility-level analysis; Col 3 & 4: SP-visit-level analysis;
Col 5 & 6: Patient exit survey analysis
Wald test comparisons of difference in marginal effects (γ) between treatment arms
Col 1 & 2 covariates: facility-level indicators for whether any SP was offered RDT, missing price info
Col 3 & 4 covariates: SP fixed effects
Col 5 & 6 covariates: Enumerator fixed effects
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 6: Evidence from SP visits on diagnostic testing (Back: 5.3)

SP took
malaria test

Positive malaria
test result
full sample

Positive malaria
test result

tested sample

(1) (2) (3) (4) (5) (6)

Pooled treatment .0309 -.0272 -.0765
(0.072) (0.054) (0.081)

T1 .0578 -.0382 -.105
(0.083) (0.065) (0.101)

T2 .0394 -.0113 -.0621
(0.089) (0.068) (0.102)

T3 -.00565 -.0326 -.0644
(0.089) (0.070) (0.109)

Control mean 0.552 0.552 0.200 0.200 0.362 0.362
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.738 0.922 0.901
Wald test p-val (γT1 ̸= γT2) 0.824 0.699 0.686
Wald test p-val (γT1 ̸= γT3) 0.441 0.936 0.716
Wald test p-val (γT2 ̸= γT3) 0.612 0.768 0.984
N 411 411 411 411 238 238

Standard errors are clustered at the facility level
SP fixed effects are included in all models
F test comparisons of difference in effects between treatment arms
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 7: Evidence from SP visits on provider advice and counseling (Back: 5.3)

Provider Advised
That Patient is
Malaria Positive

Provider Counseled
Patient

on Treatment

(1) (2) (3) (4) (5) (6)

T1 -.145+ .0353
(0.085) (0.069)

T2 -.0456 .162∗

(0.082) (0.069)

T3 -.145+ .135+

(0.085) (0.069)

T1 -.145+ .0354
(0.084) (0.069)

Pooled T2 & T3 -.0943 .149∗

(0.073) (0.059)

Pooled treatment -.111 .111∗

(0.069) (0.056)

Control mean 0.457 0.457 0.457 0.314 0.314 0.314
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.381 0.169
Wald test p-val (γT1 ̸= γT2) 0.229 0.074
Wald test p-val (γT1 ̸= γT3) 0.997 0.157
Wald test p-val (γT2 ̸= γT3) 0.236 0.695
Wald test p-val (γT1 ̸= γT2&T3) 0.488 0.064
N 411 411 411 411 411 411

Standard errors are clustered at the facility level
SP fixed effects are included in all models
F test comparisons of difference in effects between treatment arms
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 8: Incremental Benefits and ICERs (Back: 6)
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Figures

Figure 1: Patient decision to test and treat (Back: 2)

Figure 2: Types of errors (Back: 2)

46



Figure 3: Study flow diagram (Back: 3)
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Figure 4: Map of study sites (Back: 3.1)
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Figure 5: Active facilities during study period (all transactions) (Back: 4)
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Figure 6: Active treatment facilities during study period (incentivized transactions) (Back:
4)
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Figure 7: Test positivity rates by share tested, facility-level by treatment arm
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Appendix A. Cost-effectiveness Analysis Supplement

7.1 CEA Methods

Benefits are measured as patients who take ACTs appropriately, therefore only patients who
are malaria positive contribute to the benefits. To estimate the number of patients who get
ACTs appropriately in each of the intervention arms, we use the following equation:

Beneficiariest = Pr(ACT |positive)t × ACTt

where Pr(ACT |positive)t is the probability of purchasing an ACT conditional on being
malaria positive, for each intervention arm t, and ACTt is the number of patients in in-
tervention arm t who purchase ACTs. This is the share of patients who purchase ACTs,22

multiplied by a hypothetical cohort of 10,000 patients. Pr(ACT |positive)t can be further
expanded into a component that applies to patients who were tested for malaria and one
that applies to patients who were not tested:

Pr(ACT |positive)t = Pr(ACT |positive&tested)tPr(positive|tested)tPr(tested)t+

Pr(ACT |positive&untested)tPr(positive|untested)tPr(untested)t

Each of these probabilities can be found from the parameters that are measured through
the experimental design and data collection activities. Pr(ACT |positive&tested) is directly
estimated from the administrative data in the treatment groups, for patients accessing in-
centivized tests and treatments. In the control group, this probability is estimated using
the control group mean from column 4 of Table 3 (0.057) multiplied by the control group
Pr(positive|tested). Pr(positive|tested) is obtained from administrative pharmacy data
in all four arms. In the control group, this comes from aggregate reported test positiv-
ity rates from 2547 tests done in 10 control group sites that conducted testing between
January-February 2022 and kept records. In the treatment groups, this comes from the
administrative data collected through the study on individual test results, for patients who
tested through the intervention. Pr(tested) is directly estimated from the administrative
data in all four arms, and is the treatment arm specific mean in column 2 of Table 2.
Pr(ACT |positive&untested) is estimated for all four arms and is the treatment group specific
means of Pr(ACT |untested) from column 6 in Table 3 multiplied by Pr(positive|untested).
Pr(positive|untested) is estimated in the control group using data collected from the lab tech

22. Obtained from intervention group specific means from Table 3, column 2.
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activity which tested a random subset of 230 patients who purchased antimalarials for a sus-
pected illness at 28 control group sites but did not get tested prior between January-February
2022. In the treatment groups, Pr(positive|untested) = Pr(positive)−Pr(positive|tested).
Pr(positive) is the overall malaria positivity rate (without selection into testing), and is
obtained from the control group testing data (Pr(positive|tested)+Pr(positive|untested)),
and Pr(positive|tested) is directly obtained from the administrative transaction data for
patients who purchased incentivized tests.

The inputs needed to calculate the number of beneficiaries in each intervention arm can
be found in Appendix Table A1. We estimate the program benefits for each intervention
using these parameters and compare them to the status quo standard of care, as well as to
the next best alternative. For details on the sources of each parameter input for the benefits,
please see Appendix Tables A2 and A3. For details on formulas used to calculate the benefits
estimates, please see Appendix Table A4.

The costs can be broken down into direct costs of running the incentives program, the
direct costs of over-treating malaria negative patients, and other non-programmatic costs
to patients of participating in the program. To estimate these costs, we use the following
equation:

TotalCostt = ctPatientst + CostOverTxt × PatientsOverTxt + CostT imet

where t ∈ (0, 1, 2, 3) is one of the three treatment arms or control group, c is the cost of
administering the incentive interventions, Patients is the number of patients who purchased
an incentivized product, CostOverTx is the cost of over-treating malaria negative patients
with antimalarials, PatientsOverTx is the number of patients who were treated unnecessar-
ily, and CostT ime is the time cost to patients of obtaining care for their malaria symptoms
in the pharmacy setting.

In order to estimate the costs of over-treating malaria negative patients, we first esti-
mate the average cost of treatment for patients who did not get tested for malaria and
the average cost of treatment for patients who did get tested for malaria. These cost esti-
mates are directly observed from the administrative data, and we have estimates for each
of these out of pocket costs for each of my intervention arms. Then we also observe the
number of untested patients and number of tested patients in each treatment arm, again
from the administrative data. We estimate the likelihood of being malaria negative condi-
tion on being untested, and the likelihood of being malaria negative conditional on being
tested in each treatment arm. We use parameter estimates obtained from data collection
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activities for these probabilities. Pr(negative|untested) is estimated in the control group
using data collected from the lab tech activity which tested a random subset of 230 patients
who purchased antimalarials for a suspected illness at 28 control group sites but did not
get tested prior between January-February 2022. Pr(negative|tested) is obtained in the
control group from aggregate reported test positivity rates from 2547 tests done in 10 con-
trol group sites that conducted testing between January-February 2022 and kept records.
In the treatment groups, Pr(negative|untested) = Pr(negative) − Pr(negative|tested).
Pr(negative) is overall malaria negativity rate (without selection into testing), and is ob-
tained from the control group testing data (1−(Pr(positive|tested)|Pr(positive|untested))),
and Pr(negative|tested) is directly obtained from the administrative transaction data from
patients who purchased incentivized tests.

Finally, we calculate the time cost to patients of obtaining care for their malaria symptoms
in the pharmacy setting. This is relevant because patients may experience longer visit times
if they elect to be tested for malaria, which may affect their decision. We obtain estimates of
total time spent at pharmacy seeking care from the patient exit survey data (in minutes) for
each intervention arm, and multiply that by an estimate of the local hourly wage to obtain
a monetary measure of the time cost for care-seeking.

The inputs needed to calculate all cost parameters can be found in Appendix Table A1.
For details on the sources of each parameter input for the costs, please see Appendix Tables
A2 and A3. For details on formulas used to calculate the cost estimates, please see Appendix
Table A4.

7.2 CEA Results

Below are details on calculating the benefits and costs that informed the final ICERs pre-
sented in the main text.

7.2.1 Benefits

In the control group, the probability of taking an ACT conditional on being malaria positive is
< 1%, in each intervention arm this probability is 3.5%, 4.3% and 3.3% in the patient subsidy
group (T1), pharmacy incentives group (T2), and the combined group (T3), respectively.
The total number of beneficiaries in each arm are 73, 253, 331, and 238 in the control group,
T1, T2, and T3, respectively (assuming a hypothetical cohort of 10000 suspected malaria
patients who sought care in each arm). These estimates can be found in the top panel of
Table A5.
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7.2.2 Costs

In the control group, the total implementation cost is $0, because there is no programmatic
cost of administering any incentive interventions. The costs for the intervention arms are
$2,574.00, $3,320.00 and $3,748.00 in T1, T2, and T3 respectively. These cost differences
are due to the differential take up of incentivized rapid tests and ACTs in each intervention
arm, with the combined arm having the largest share of patients purchasing incentivized
rapid tests driving most of this difference. These cost estimates can be found in the bottom
panel of Table A5.

For the limited societal perspective, we also include the direct medication costs of over-
treating malaria negative patients in each of the intervention arms, and the time costs to
patients for seeking malaria care at pharmacies in each of the intervention arms in addition to
the program implementation costs. In the control group, the total social costs are $374,594,
and the societal costs for the intervention arms are $364,226, $337,921, and $380,520 in T1,
T2 and T3 respectively. The cost differences are due to differential take up of incentivized
rapid tests and ACTs in each intervention arm, the arm-specific malaria test negativity
rate, which is highest in the combined arm, and the share of malaria negative patients who
purchase antimalarials unnecessarily. These cost estimates can be found in the bottom panel
of Table A5.

Table A6 presents the incremental cost of each intervention relative to the next less
expensive alternative. From the implementer perspective, the incremental costs are relatively
small, since the incentive amounts are modest. The control group (status quo) is the cheapest
alternative, and the combined arm is the most expensive. From a limited societal perspective,
both patient subsidies and pharmacy incentives are cost-saving interventions relative to the
control group because of the lower costs incurred from fewer malaria negative patients being
treated unnecessarily and lower time costs of care-seeking due to lower patient volumes. The
combined arm is the most expensive from a limited societal perspective, because of the larger
time cost to patients seeking care, relative to the control group.

7.3 CEA Tables
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Table A2: CEA Probability Inputs - sources

SOURCES

P(tested) Intervention group means from Table 4, column 2
for all 4 arms

P(untested) 1 - P(tested)
P(malaria positive | tested) Control group: administrative data from pharma-

cies on positivity rates (8 sites), positivity rates
from random testing activity multiplied by share
tested (19 sites); Treatment groups: test positivity
rates from administrative transaction data of pa-
tients accessing tests through interventions.

P(malaria positive | untested) Control group: lab tech testing random sub-
set of control group patients; Treatment groups:
P(malaria positive) from control group (unselected
positivity rate); P(positive | tested), obtained from
administrative transaction data as described above,
P(malaria positive | untested) = P(malaria posi-
tive) - P(malaria positive | tested)

P(malaria positive) P(malaria positive | tested) + P(malaria positive |
untested) obtained from lab tech activity in control
group, applied to all groups (base malaria positivity
rate)

P(ACT | malaria positive & tested) Control group mean from Table 5 column 4 *
P(malaria positive | tested); Treatment group
means from administrative transaction data for pa-
tients accessing incentivized tests and treatments

P(ACT | malaria positive & untested) Group means from Table 5 column 6 * P(malaria
positive | untested), for all 4 arms

P(malaria negative | untested) Calculated directly from P(malaria negative) -
P(malaria negative | tested) for all groups

P(malaria negative | tested) Control group: lab tech testing random sub-
set of control group patients; Treatment groups:
P(malaria negative) from control group (unselected
negativity rate); P(negative | tested), obtained from
administrative transaction data as described above,
P(malaria negative | untested) = P(malaria nega-
tive) - P(malaria negative | tested)
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Table A3: CEA Additional Inputs - sources

SOURCES

Number of patients who purchased ACTs Intervention group means from Table 5 column 2;
multiplied by 10000 hypothetical cohort

Incentive unit cost (RDT) ($) Table C1; transaction completion incentives in T2
& T3 are included

Number of patients purchasing incentivized RDTs Share from Administrative data (positive_rdt);
multiplied by 10000 hypothetical cohort

Incentive unit cost (ACT) ($) Table C1
Number of patients purchasing incentivized ACTs Share from Administrative data (act_purchased);

multiplied by 10000 hypothetical cohort
Average antimalarial treatment unit cost ($), untested Administrative data (cost_malaria_products if

rest_rdt_sales==0)
Number of untested patients Inervention group means from Table 4, column 2;

multiplied by 10000 hypothetical cohort
Average antimalarial treatment unit cost ($), tested Administrative data (cost_malaria_products if

rest_rdt_sales==1)
Number of tested patients Inervention group means from Table 4, column 2;

multiplied by 10000 hypothetical cohort
Time cost of seeking care Mean time (mins) spent with provider

by treatment arm, from patient survey
(s4_a7_prov_treat_min)

Hourly wage ($) Kenya Continuous Household Survey Program 2020
Number of patients who accessed care Fixed at 10000 hypothetical cohort across all arms
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Table A4: CEA Benefits and Cost Estimates - formulas

FORMULAS

P(ACT | malaria positive) P(ACT | malaria positive ) = P(ACT |
malaria positive & tested)P(malaria posi-
tive | tested)P(tested) + P(ACT | malaria
positive & untested)P(malaria positive |
untested)P(untested)

Number of patients taking ACTs Administrative data (act_sales)
Number of beneficiaries P(ACT | malaria positive)*Number of ben-

eficiaries

FORMULAS

Total cost of incentives (RDT incentive*number of patients getting
RDT) +(ACT incentive*number of patients
getting incentivized ACT)

Total cost of over-treating malaria negative patients P(malaria negative | untested)*number of
untested patients purchasing antimalar-
ials*cost of antimalarial treatment for
untested patients + P(malaria negative |
tested)*number of tested patients purchas-
ing antimalarials*cost of antimalarial treat-
ment for tested patients

Total time cost to patients seeking care Number of malaria patients*average time
spent with provider*average hourly wage

Total costs - societal perspective Total cost of incentives + Total cost of over-
treating malaria negative patients + Total
time cost to patients seeking care

Total costs - implementer perspective Total cost of incentives
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Table A5: Benefits and Costs Estimates

Control
(status quo)

Patient
subsidies

Provider
incentives

Hybrid

BENEFITS

P(ACT | malaria positive) 0.008 0.035 0.043 0.033
Number of patients taking ACTs 8670 7220 7778 7310
Number of beneficiaries 73 253 331 238

COSTS

Total cost of incentives $0.00 $2,574.00 $3,320.00 $3,748.00
Cost of over-treating malaria negative patients $13,753.75 $7,392.35 $7,941.13 $9,012.15
Total time cost to patients seeking care $360,840.00 $354,260.00 $326,660.00 $367,760.00
Total costs - societal perspective $374,593.75 $364,226.35 $337,921.13 $380,520.15
Total costs - implementer perspective $0.00 $2,574.00 $3,320.00 $3,748.00

Table A6: Incremental Costs

Implementer perspective
Costs Inc. cost

Control (status quo) $0.00 -
TI - Patient subsidies $2,574.00 $2,574.00
T2 - Provider incentives $3,320.00 $746.00
T3 - Hybrid $3,748.00 $428.00

Societal perspective
Costs Inc. cost

T2 - Provider incentives $337,921.13 -
T1 - Patient subsidies $364,226.35 $26,305.22
Control (status quo) $374,593.75 $10,367.40
T3 - Hybrid $380,520.15 $5,926.40

Implementer perspective includes only incentive costs.
Societal perspective includes incentive costs, costs of
overtreating malaria negative patients, and time costs.
Incremental cost = incremental cost relative to next
most expensive alternative.
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Appendix B. Pharmacy-level test positivity rates detail

Table 4 presents pharmacy-level results on treatment purchase conditional on test positivity
rates at the site-level. In the intervention arms (T1, T2, T3), test positivity for the tested
sample is observed directly from transaction records for patients that tested for malaria
using the incentivized rapid tests. In the control group, we do not observe test positivity
for individual patients. In the transaction data for all sites, we do observe whether clients
purchased a rapid test and what their treatment choice was. From administrative aggregate
testing records provided by a subset of control group sites that keep records on malaria
positivity rates, we know that 24% of tests came back positive between January - February
2022. We use this test positivity rate, combined with the test positivity rate obtained from
an independent random testing exercise of a subset of patients seeking care in control group
sites, impute test positivity rates absent any incentives for the control group. We follow
a parallel process to obtain pharmacy-level test negativity rates (with the third, omitted,
group being the untested sample).

Appendix C. Supplementary Tables and Figures

7.4 Appendix Tables and Figures

Figure C1: Malaria sales, seasonal trends (Back: 5.1)
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Table C2: Study timeline (Back: 3.2)

Jun-Dec ’21 • Experiment launch: baseline pharmacy survey with 233
pharmacy owners and staff from all 140 sites; staggered
onboarding of 140 pharmacies to intervention and study

Aug ’21-Feb ’22 • Monitoring: implementation team monitors intervention
implementation through regular outreach calls and random site
visits; ongoing administrative data collection through digital
platform

Oct ’21-Jan ’22 • Patient exit survey: survey of random sample of 1654 adult
clients who seek care for malaria-like symptoms

Dec ’21-Feb ’22 • Standardized patient visits: 412 mystery shopper visits by
enumerators presenting as suspected malaria patients, to obtain
data on patient-pharmacist interaction, implementation fidelity,
and quality of care

Jan-Feb ’22 • Control group testing: testing of random subset of 230
pharmacy clients at control group sites to obtain test positivity
rate

Mar ’22 • Pharmacy endline survey: survey of all pharmacy staff and
owners at conclusion of the data collection period
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Table C4: Primary outcomes regressed on baseline characteristics (Back: 4)

(1) (2) (3)

Rapid test uptake
ACT uptake

with test
ACT uptake
without test

Months .00143 .00197+ -.00104
on sales management tool (0.002) (0.001) (0.002)

Below median baseline .194∗∗ .0369 -.155∗

malaria sales (0.066) (0.034) (0.064)

Average monthly -.000374 -.000687 -.00552∗

malaria sales, 2019-2020 (0.001) (0.000) (0.002)

Average monthly -.00211+ -.000573 .00812∗∗

ACT sales, 2019-2020 (0.001) (0.001) (0.003)

Average monthly .0157∗∗ .0095∗∗ -.0119∗∗

rapid test sales, 2019-2020 (0.003) (0.002) (0.003)

Site was in earlier -.00984 -.00811 .0372
pilot study phase (0.052) (0.036) (0.055)

Site is in an urban .0183 .0105 .0195
area (0.054) (0.026) (0.054)

Site is in a malaria .0729 .0648∗∗ -.105
endemic county (0.073) (0.024) (0.073)

Site does not have .673∗∗ .224∗∗ -.652∗∗

clinical capabilities (0.050) (0.071) (0.046)

% of staff .147+ .0561 -.154∗

who are female (0.078) (0.039) (0.075)

Age of pharmacy .00767∗∗ .00261∗ -.00754∗

owner (0.003) (0.001) (0.003)

Average age of .000397 .000689 -.00217
pharmacy staff (0.006) (0.002) (0.005)

Female owner -.202∗∗ -.0851∗ .182∗∗

(0.063) (0.033) (0.063)

Number of staff .053 .0383 -.0728
(0.060) (0.029) (0.059)

N 51486 51486 51486
Linear probability models for primary outcomes on baseline characteristics
Standard errors are clustered at the facility level
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01

65



Table C5: Secondary outcomes regressed on baseline characteristics (Back: 4)

(1) (2) (3)
Antimalarial
uptake overall

ACT uptake
overall

ACT uptake w/ test,
ACT sales

Months .000965 .000923 .00249
active on sales management tool (0.002) (0.002) (0.002)

Below median baseline -.00931 -.118∗ .112∗

malaria sales (0.029) (0.051) (0.053)

Average monthly -.00297∗∗ -.00621∗∗ .0000527
malaria sales, 2019-2020 (0.001) (0.002) (0.001)

Average monthly .00373∗∗ .00754∗∗ -.00211+

ACT sales, 2019-2020 (0.001) (0.002) (0.001)

Average monthly .00364∗ -.00239 .014∗∗

rapid test sales, 2019-2020 (0.002) (0.002) (0.003)

Site was in earlier -.0218 .0291 .000996
pilot study phase (0.039) (0.045) (0.050)

Site is in an urban -.0373+ .03 .0146
area (0.022) (0.040) (0.043)

Site is in a malaria .114∗∗ -.0399 .111∗

endemic county (0.025) (0.064) (0.049)

Site is does not have .177∗ -.428∗∗ .738∗∗

clinical capabilities (0.080) (0.088) (0.044)

% of staff -.0224 -.0976+ .115+

who are female (0.025) (0.050) (0.061)

Age of pharmacy .00336∗∗ -.00493+ .00765∗

owner (0.001) (0.003) (0.003)

Average age of -.00212 -.00148 -.000143
pharmacy staff (0.002) (0.004) (0.004)

Female owner .0884∗ .0974∗ -.164∗∗

(0.034) (0.042) (0.054)

Number of staff .038+ -.0345 .038
(0.022) (0.041) (0.047)

N 265610 51486 40261
Linear probability models for secondary outcomes on baseline characteristics
Standard errors are clustered at the facility level
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table C6: Impact on antimalarial uptake, adjusted logistic regression models (Back: 5.2)

Antimalarial
sales

overall

Non-ACT
sales

overall

(1) (2) (3) (4)

Pooled treatment .000427 -.000289
(0.023) (0.003)

Patient discount .0259 -.00157
(γT1) (0.025) (0.005)

Pharmacy incentive -.00873 -.00444
(γT2) (0.032) (0.004)

Patient discount and -.00655 .00308
pharmacy incentive (γT3) (0.027) (0.005)

Control mean 0.197 0.197 0.022 0.022
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.231 0.426
Wald test p-val (γT1 ̸= γT2) 0.156 0.544
Wald test p-val (γT1 ̸= γT3) 0.202 0.471
Wald test p-val (γT2 ̸= γT3) 0.943 0.200
N 265610 265610 258765 258765
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales, female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ) between treatment arms
Denominator is all patients that purchased malaria product during study period
Outcome 3: 45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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