
Designing Incentive Contracts to Improve the Diagnosis
and Treatment of Malaria∗

Maria Dieci † Paul Gertler‡ Jonathan Kolstad§

February 21, 2024

Abstract

We examine whether a diagnosis contingent incentive contract structure improves the diagnosis
and appropriate treatment of malaria, and whether demand or supply incentives for rapid tests
(RDTs) and high quality antimalarials (ACTs) only to malaria positive cases better promote
socially-optimal antimalarial use. Using a cluster randomized trial design we randomize pa-
tient subsidies and pharmacist performance incentives. We find that both patient subsidies and
provider incentives increase RDT testing uptake by 25 percentage points, on average, and lead
to significant improvements in appropriate antimalarial use, largely due to malaria negative
patients opting out of taking unnecessary malaria medication. The increase in ACT purchase
appears to be concentrated among those that find out that they are malaria positive. However,
the reduction in ACT purchase is concentrated in the group that finds out that they were
malaria negative and in the incentivized treatment groups. This suggests that the reduction in
ACT purchase is driven by a combination of patient specific diagnosis information and incen-
tives. We find evidence that patient subsidies and provider incentives operate through different
channels: patient subsidies result in significantly lower RDT prices paid by patients, while
provider incentives induce pharmacists to provide more comprehensive counseling. Finally, we
find that all three incentive interventions are cost-effective approaches to improve appropri-
ate antimalarial use in pharmacies. Taken together, these results suggest that appropriately
calibrated and targeted financial incentives are promising for changing patient and provider
behavior, with implications for quality of care.
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1 Introduction

A key feature of healthcare markets is the role of information Arrow 1963. The process of

caring for a patient includes both a diagnostic (information) phase to assess disease and a

treatment decision. Existing models of physician treatment decisions and empirical imple-

mentations do not distinguish between these phases. Most focus on the ultimate treatment

which is a result of both components.

Existing models of a (relatively) informed provider responding to incentives (see McGuire

2000 for a review) and influencing both patient demand and selling treatments generates

. Less attention has been paid to the distinction in treatment between correct diagnosis

(information) and treatment decisions. When there is a role for matching patients to care,

acquiring information through diagnostic testing has critical implications for efficiency.

In this paper we explore the interaction of diagnostic decisions, patient beliefs and treat-

ment decisions in the context of diagnosis and treatment for malaria.

Both over- and under-treatment of medical conditions are ubiquitous worldwide and can

have serious negative consequences for patient outcomes (Das and Hammer 2014; Whitehead,

Dahlgren, and Evans 2001). For example, studies in both the US and China have found high

levels of unnecessary antibiotic prescriptions (Currie, Lin, and Meng 2014; Fleming-Dutra

et al. 2016), which may affect patient outcomes and contribute to growing rates of drug

resistance. Similarly, studies across sub-Saharan Africa have found that large shares of

malaria-positive patients go untreated while large shares of malaria-negative patients receive

antimalarials Ansah et al. 2010; J. Cohen, Pascaline Dupas, and Schaner 2015; J. L. Cohen

et al. 2013; O’Meara, Mohanan, et al. 2016). However,

We investigate the extent to which financial incentives can be used to cost-effectively

improve the allocation of anti-malarial drugs by increasing the treatment of malaria positive

patients and reducing the unnecessary treatment of malaria negative patients. Specifically,

we use a diagnosis-contingent contract structure that provides incentives to increase the use

rapid diagnostic tests (RDTs) to determine if a patient is malaria positive with additional
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incentives to treat using front-line anti-malaria drugs (Artemisinin Combination Therapies –

ACTs) only if malaria positive. The contract encourages appropriate treatment both through

generating information about illness status (i.e. malaria positive or negative) from the RDT

and through the diagnosis contingent financial incentives for ACT use. This way the incentive

contract encourages appropriate treatment and discourages unnecessary treatment.

This contract represents an innovation in the structure of payment incentive contracts

studied. Most consumer subsidies for health products and health care as well as performance

pay schemes pay a flat fee for all covered services, where fees are not differentiated based on

diagnostic information. In contrast, our incentive contract only pays for treatment contingent

on a positive diagnosis for a treatable medical condition. The contract strengthens medical

decision making by providing incentives to improve both diagnosis and treatment.

Using a cluster randomized field experiment in malaria-prone counties in Kenya, we

evaluate the effect of the diagnosis contingent financial incentives on malaria testing and

treatment decisions. We further investigate whether financial incentives are more effective

when they are given to patients through subsidies (demand-side) versus to providers through

performance incentives (supply-side), or a combination. We also examine the mechanisms by

which the incentives work. Demand- and supply-side incentives of the same magnitude should

result in the same impact on consumer demand if the supply-side subsidies are simply fully

passed through to consumers in terms of reduced prices. The impact may differ, however,

if some of the incentives are captured by the provider and not passed through to patients,

or if providers encourage increased demand through non-price mechanisms such as improved

counseling. We also investigate the extent to which the effect of the incentives contract on

treatment (ACT use) is driven by information (i.e. malaria status) versus financial incentives.

Malaria is an important disease to study clinical decision-making because it is a well-

understood illness, it has a high disease burden, and nearly all deaths and serious illness are

preventable through effective and inexpensive medication (WHO 2021). RDTs are widely

available across high-burden areas in sub-Saharan Africa and are highly accurate in con-
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firming the presence or absence of malaria parasites in a symptomatic patient. In practice,

however, few malaria patients are diagnosed prior to getting treated. Low diagnostic testing

contributes to a gap between treatment and need; missed diagnoses result in more severe

avoidable illness and over-prescription of anti-malaria drugs to malaria-negative patients can

lead to heightened drug resistance in the population.

The literature identifies several potential reasons as to why diagnostic testing is low.

Patients may not demand tests because of (i) strong prior beliefs about their malaria status

– i.e., a low perceived value of information from testing (Maffioli et al. 2019), (ii) the cost

of the test is prohibitive (J. Cohen, Pascaline Dupas, and Schaner 2015; O’Meara, Menya,

et al. 2018), and (iii) they do not want to wait for the diagnostic test result – i.e., impatience.

Moreover, providers may not prescribe a test prior to treatment because (i) they have estab-

lished practices of symptom-based diagnosis – i.e., established norms and habits (Mbonye

et al. 2013), (ii) they are optimizing perceived patient preferences (Lopez, Sautmann, and

Schaner 2020), and (iii) they have profit motives (Currie, Lin, and Meng 2014).

We explore these issues in the context of an RCT with pharmacies in high malaria

prevalence counties in Kenya, where over 3.5 million people fall ill with malaria annually. The

study population lives near Lake Victoria and on the coast, areas that are most vulnerable

to infection (Disease Control and Prevention 2018; Initiative 2021). Over half of malaria

patients access treatment via pharmacies, often the preferred access point for primary care

given pharmacies’ convenience and reliable presence even in areas that are under-served by

public health care clinics and hospitals (Burton et al. 2011; Musuva et al. 2017). Given that

pharmacies play a crucial role in providing access to malaria case management in Kenya,

it is essential that they provide appropriate diagnostic testing and low-cost, effective and

appropriate medicines for treatment.

We sequentially randomized 140 pharmacies into either a status quo control group or one

of three treatment groups, each with a two-part incentive: (1) patient subsidies for RDT tests

and for the anti-malarial drugs (Artemisinin Combination Therapies – ACTs) conditional on
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a positive test; (2) pharmacy incentives for RDT tests, and for prescribing ACTs conditional

on a positive test; and (3) combined incentives (patient subsidies and pharmacy incentives)

for RDT and ACTs for confirmed malaria-positive cases. The total value of the subsidies

was held constant across the three intervention arms. This design allowed us to evaluate

the impact of a two-part incentive structure where payouts depend on the full continuum of

care (and diagnostic information) as well as to examine the causal effect of targeting that

incentive to the patient versus the provider.1

We find that both patient subsidies and provider incentives are effective at increasing

RDT uptake and at improving targeting treatment to malaria-positive patients. Patient

subsidies increase the likelihood that a symptomatic patient takes a rapid test by 27 per-

centage points over a control group rate of 8 percent.2 Pharmacy incentives increase the

likelihood of rapid test uptake by 20 percentage points, which is statistically indistinguish-

able from the demand-side approach.

Absent any interventions, 87% of suspected malaria patients purchase ACTs, of which as

many as 66% are doing so unnecessarily because they do not have malaria. This represents a

high baseline level of medication waste, and means that a large share of patients may experi-

ence delays in getting appropriate care. We find that the incentives lead to an overall decline

in ACT usage of 14 percentage points, which can be explained by the increase in testing.

On the one hand, we find that both demand and supply incentives increase the likelihood

that a patient purchases ACTs combined with a diagnostic test by 7 percentage points. On

the other hand, we see large declines (16-22 percentage points in demand- and supply-side

arms) in the likelihood that patients purchase malaria treatment without a diagnostic test.

We find that these offsetting effects are due to improvements in treatment targeting, and in

particular, malaria-negative patients listening to that test result and electing to forego un-
1Prior literature has studied the impact of demand-side subsidies, but not provider incentives, on malaria

care, finding them to be effective at improving testing but not at improving test result adherence (J. Cohen,
Pascaline Dupas, and Schaner 2015; O’Meara, Menya, et al. 2018; O’Meara, Mohanan, et al. 2016).

2This result is consistent with what has been found in prior literature on consumer subsidies for for
RDTs and other health goods.(J. Cohen, Pascaline Dupas, and Schaner 2015; Pascaline Dupas 2014)
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necessary antimalarial purchases. The increase in ACT purchase appears to be concentrated

among those that find out that they are malaria positive. However, the reduction in ACT

purchase is concentrated in the group that finds out that they were malaria negative and

in the incentivized treatment groups. This suggests that the reduction in ACT purchase is

driven by a combination of patient specific diagnosis information and incentives.

We also find that while the patient subsidies for RDTs resulted in significantly lower

prices being paid by patients, none of the provider incentives were passed through to lower

prices. Patient subsidies lower prices paid by about 43% (yielding a price elasticity of de-

mand of 7.86). We do, however, find that the pharmacist provided more explanation of

diagnosis and counseling of treatment based on the test result – i.e., patient specific infor-

mation. Thus, the financial incentives seemed to work through an information pathway. The

demand subsidies induced more patients to purchase RDTs that provided accurate illness

status information leading to more appropriate use of RDTs. The provider subsidies lead

pharmacists to promote the value of RDTs leading to similar results.

We also conduct a cost-effectiveness analysis, which provides a more complete picture of

how to efficiently allocate resources. The improvements in cost-effectiveness as compared to

the status quo that we find are largely due to the fact that as a result of these interventions,

we find significant reductions in malaria-negative patients taking unnecessary antimalarials.

The outcome of interest for our cost-effectiveness measures is the incremental cost per ad-

ditional patient appropriately treated with ACTs (thus, is malaria positive). We include

direct costs of over-treating malaria negative patients and the time costs for patient seeking

care. We find that the patient subsidy and the provider performance incentive interventions

are significantly cost-saving, relative to the control group. The hybrid approach costs $36

for each additional patient that purchases an ACT and is malaria positive, compared to the

status quo control group. This suggests that all interventions are relatively low cost when

compared to the status quo, and that patient subsidies and pharmacy incentives may be

cost-saving depending on the perspective taken.
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This paper makes five contributions. First, it adds to our understanding of how incentives

targeted at the demand-side or the supply-side can affect decision-making. Within general

economics, we build on papers like Busse, Silva-Russo and Zettelmeyer that look at how

incentives targeted to either consumers or sellers affect consumer prices and demand (Busse,

Silva-Risso, and Zettelmeyer 2006). We also contribute to this conversation in the health

economics literature. Financial incentives are well-established tools used around the world to

promote a wide range of health behaviors. Typically, demand and supply side incentives are

studied independently, in this paper we compare them directly and put the two literatures in

conversation with each other. Demand-side incentives all operate based on the assumption

that either price itself is a barrier to adopting a health behavior, or an incentive can nudge

people to overcome other non-pecuniary barriers. Price experiments for health treatments

have shown that people do not respond uniformly to prices, and instead the nature of the

health decision and timing of the benefits affect demand elasticity (J. Cohen, Pascaline

Dupas, and Schaner 2015; Dow, White, and Bertozzi 2016; P. Dupas and Miguel 2017;

Pascaline Dupas 2014; O’Meara, Mohanan, et al. 2016).

On the supply side, providers influence patient health decisions using their expertise,

preferences, and sometimes biases which can have significant effects on quality of care. They

can act as gatekeepers to reduce unnecessary medical treatments, or promote overuse (Currie,

Lin, and Meng 2014; Lopez, Sautmann, and Schaner 2020). Performance-based financing

mechanisms in low- and middle-income countries reward providers for both quantity and

quality of health services delivered by paying for key outputs (Ahmed et al. 2023; Basinga

et al. 2011; Gertler, Giovagnoli, and Martinez 2014; Miller and Babiarz 2013; Peabody et al.

2014; Witter et al. 2012; Yip et al. 2014). These studies suggest that properly incentivizing

providers can lead to improvements in health care utilization and key health outcomes,

but the evidence has been limited to a relatively narrow set of indicators and outcomes.

Additionally, the literature on performance incentives focuses on the price effects, but ignores

mechanisms through which incentives operate. Our study provides evidence on behavioral
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channels through which provider performance incentives may impact quality.

Second, we contribute to these two strands of literature by innovating in how health

financing contracts are structured. Conditional cash transfers for preventive health visits,

for example, incentivize health care utilization by lowering the cost of care to patients. In

the US, insurance products that have modest copays or deductibles operate in the same way

- by lowering the price patients pay. These examples, as well as other demand-side incentives

for healthcare, highlight how these financing models typically operate - they reimburse a flat

rate for services used through lower prices/copays (Arrow 1978; Cutler and Zeckhauser 2000;

McGuire 2000; Pauly 1980). Performance pay models that reward providers either directly

through bonuses tied to services provided (see (Ahmed et al. 2023; Basinga et al. 2011;

Gertler, Giovagnoli, and Martinez 2014; Miller and Babiarz 2013; Peabody et al. 2014; Witter

et al. 2012; Yip et al. 2014) for examples) or indirectly through capitation have a similar

structure. Payments are typically made based on services provided, and do not explicitly take

into account diagnostic information when setting copays for various services.3 We propose a

different type of contract: one that explicitly pays (charges) differentially for services based

on diagnostic information. In our setting, patients and providers are incentivized to test for

suspected malaria - this step mirrors standard fee for service models. Next, they are further

incentivized to get treated only if patients receive a positive diagnosis. This fits in with other

literatures on performance pay based on outcomes, including applications for medical doctors

and teachers (Campbell et al. 2009; Podgursky and Springer 2007; Prendergast 1999).

Third, it adds to the literature on how personalized health information and financial

incentives can be combined to change health behavior. Information combined with financial

incentives has shown more promise in encouraging health behavior adoption (Pascaline Dupas

2011; Ma et al. 2014; Meredith et al. 2013). But, the quality of the information matters:

general health information tends to be less effective in changing individual behaviors than

individually tailored messages targeted at the key decision-makers (Gong 2015). Studies that
3Though, of course, we acknowledge that patients with different medical needs will pay different amounts

for their care because services needed will be diagnosis-dependent.
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have examined whether information provided by a malaria diagnostic test changes treatment-

seeking behavior have found mixed results – information is effective in steering some patients

towards appropriate treatment options, especially when coupled with an incentive, but many

elect to ignore test results when making treatment decisions (J. Cohen, Pascaline Dupas,

and Schaner 2015; O’Meara, Menya, et al. 2018). This study leverages the two steps of the

testing and treatment decision by providing a financial incentive for treatment conditional

on the personalized health information provided by the test. We test the extent to which

appropriate malaria treatment use is a result of information (RDT result) or an added

financial incentive (for ACT), contributing to the long literature on the role of information

and information asymmetries in health decision-making (Arrow 1978).

Fourth, this paper contributes to our understanding of how pharmacists make decisions.

Pharmacists are important care providers in many low- and middle-income country contexts

and are under-studied in the literature on provider motivation. Prior studies of financial

incentives for malaria care in Kenya have used vouchers that patients could redeem at phar-

macies but have not studied the pharmacist’s role in malaria case management directly.4

Finally, we develop a cost-effectiveness framework to quantify the societal costs of over-

treatment with antimalarials and benefits of appropriate malaria treatment targeting from

an implementer and societal perspective. The framework that we develop for assessing cost-

effectiveness can be extended to other settings that are characterized by diagnostic testing

availability and over-treatment that can have negative social consequences.

The remainder of this paper is organized as follows: Section 2 discusses the conceptual

framework and hypotheses for the main research questions and outcomes. Section ?? de-

scribes the experimental design, data and methods. Section 3 presents experimental results

on the main outcomes and effects, mechanisms, and cost-effectiveness. Section 4 concludes.
4However, there is at least one other ongoing study which tests pharmacy incentives for malaria testing

and treatment (Woolsey et al. 2021).
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2 Conceptual framework

The primary goal of clinical decision-making is to ensure that patients who seek care are

given the diagnosis and treatment recommendations that are best suited to their needs.

For many common illnesses, providers can rely on clinical guidelines that provide a set of

decision rules to aid in interpreting noisy and incomplete symptom signals to diagnose and

treat. For malaria, clinical guidelines are clear: confirm the malaria diagnosis with either

a rapid diagnostic test or microscopy prior to administering antimalarials. Rapid tests for

malaria are widely available, affordable, and can be administered by a wide range of health

professionals. Despite this, most malaria cases are treated without any formal diagnosis.

Two types of errors can occur when antimalarials are administered without a diagnostic

test: overtreatment of malaria-negative individuals with antimalarials, and undertreatment

of malaria-positive individuals with ACTs (Figure 1). Overtreatment occurs when malaria

negative patients still get prescribed antimalarials, and can lead to delays in correct care for

individual patients,5 and to increases in drug-resistant strains of malaria.6 Undertreatment

occurs when malaria-positive patients do not get prescribed ACTs, which can lead to delays

in appropriate care and increased complications due to illness.

Below is a conceptual framework that illustrates patient and pharmacist decision-making7

Then, we aggregate the individual testing and treatment decisions to the population level

and discuss how these parameters are measured in the experimental design.
5In practice, there are different possible diagnoses given a set of observable symptoms for a malaria-

negative patient, including harmless viral infections, and more serious problems that require different treat-
ments to cure.

6This is a well-founded public health concern. Chloroquine-resistant P. falciparum has spread to nearly
all areas of the world where falciparum malaria is transmitted, making this drug ineffective (World Health
Organization 2018).

7This conceptual framework builds from models developed in Lopez et al 2020 Lopez, Sautmann, and
Schaner 2020 and Cohen, Dupas and Schaner (J. Cohen, Pascaline Dupas, and Schaner 2015).
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2.1 Patient and pharmacist decisions

Patients and pharmacists make a series of coordinated decisions, which can be influenced by

a variety of factors, to appropriately manage a suspected malaria case. We illustrate this

sequence for patients in Figure 2. The starting point for this framework is that the patient

is symptomatic and has decided to seek care at a pharmacy.8 The first decision that the

patient makes is whether or not to take a diagnostic test (Step 1 in the figure). The decision

to test depends on factors like availability, the pharmacist’s recommendation, cost, and the

patient’s own beliefs about her illness status. If the diagnostic test is expensive, especially

relative to the treatment, the patient may avoid purchase due to low willingness or inability

to pay.

If the patient does not get diagnosed, she does not gain any additional information about

her illness status, and she must decide whether to purchase ACTs or not. If the patient does

get diagnosed, she learns her malaria status with a high degree of certainty (Step 2 in the

figure). At this point, the treatment choices are the same as if she did not get diagnosed,

but the clinically appropriate course of action is clear (Step 3 in the figure). From a public

health perspective, the optimal end states are illustrated in the green boxes in the figure:

malaria positive patients obtaining ACTs and malaria negative patients not obtaining ACTs

or other antimalarials.

The interventions tested in this study aim to align patient and pharmacist objective

functions by using financial incentives that incentivize testing and only treating malaria-

positive cases. For patients, this reduces the cost barrier to testing and incentivizes use

of ACTs if appropriate. The fact that malaria-negative patients receive no discount for

medications (so, would be responsible for paying full price) further disincentivizes patients

from purchasing antimalarials unnecessarily. By incentivizing pharmacists to diagnose, they
8Because this study’s target population is febrile patients who seek care at pharmacies, the conceptual

framework restricts the scope of the decision to after a patient has already made the decision to seek care in
the private sector as opposed to either (a) not seeking care at all, or (b) seeking care at a public clinic. This
is important, as a different starting point may yield different types of decisions with associated implications
for program design and patient outcomes.
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may encourage patients to get tested (supplier-induced demand). Additionally, incentivizing

patients to make treatment recommendations that are linked to the diagnostic test outcome

may also encourage patients to choose treatment options that are based on clinical need,

rather than perceived illness status. Supplier-induced demand in this setting can actually

encourage use of high value care, and move patients more towards optimal outcomes. For

pharmacists, these incentives make diagnostic testing more attractive from the perspective

of firm profitability by compensating for any lost medication sales that would come from

malaria-negative patients choosing to not purchase antimalarials.

2.2 Experimental treatments

The treatment arms incentivized patients, pharmacists, or both to use malaria rapid tests

and to use ACTs when patient tests positive. The magnitude of the incentive was held

fixed at 200 Kes (~$2 USD) across all three treatment arms.9 This amount was either given

entirely to the patient in the form of a subsidy, entirely to the pharmacy in the form of an

incentive divided between the pharmacy owner and attendant, or split between the patient

and the pharmacy in the combined arm. The four intervention arms are as follows (also in

Appendix Table C1):

1. Control group (C): pharmacy is an active user of the basic sales and inventory manage-

ment digital platform, and pharmacy manages their own stock of malaria diagnostic

tests and treatments. Patients purchase diagnostic tests and treatment at market

prices, and pharmacies stock and price these products according to their business

practices.

2. Patient subsidy group (T1): In addition to the features present at control pharmacies,

clients who seek care for suspected malaria cases are eligible for a subsidized rapid test
9The incentive amount is consistent with prior literature, was determined after a pilot phase, and was

calibrated to ensure pharmacy profitability would not be adversely affected, compared to the status quo.
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(90% subsidy, a 10 Kes copay) and a subsidized ACT (80% subsidy, a 30 Kes copay)

conditional on a confirmed positive malaria diagnosis.

3. Pharmacy incentive group (T2): In addition to the features present at control phar-

macies, the pharmacy owners receive an incentive to sell the rapid test (90 Kes), and

an additional incentive to prescribe ACTs to malaria-positive patients (80 Kes). Phar-

macy attendants receive a 30 Kes incentive for recording transaction information in the

malaria case management platform and completing the sale of incentivized products.

4. Combined group (T3): In addition to the features present at control pharmacies, the

clients are eligible for discounted rapid tests (60% subsidy, a 40 Kes copay) and dis-

counted ACTs conditional on a positive test result (60% subsidy, a 60 Kes copay).

Pharmacy owners receive an incentive to sell rapid tests (15 Kes), and an additional

incentive to prescribe ACTs to malaria-positive patients (15 Kes). Pharmacy atten-

dants receive a 30 Kes incentive for recording transaction information in the malaria

case management platform and completing the sale of incentivized products.

The interventions were operationalized by Maisha Meds, a Kisumu-based healthcare social

enterprise that provides sales and inventory management support to small pharmacies and

clinics throughout Kenya. All pharmacies in the sample were existing users of the Maisha

Meds sales management platform, which records all pharmacy transactions and product

stock. 10 Pharmacy staff received training on the importance of diagnostic testing (all arms),

the malaria case management tool and proper rapid test administration (intervention arms),

and rapid tests and ACTs were provided on consignment through the program (intervention

arms).
10The incentive interventions were integrated into this digital platform and managed centrally by the

Maisha Meds team. Subsidy and incentive amounts were automatically calculated based on the products
that are being bought/sold and verified by implementation staff independent of the pharmacies prior to
disbursement to ensure implementation fidelity.
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2.3 Sample selection and pharmacy randomization

Within study counties, all pharmacies that were part of the Maisha Meds network were

mapped and screened for eligibility. To ensure adequate regulatory oversight and homogene-

ity among study sites, only licensed pharmacies that were registered businesses with Kenya’s

Pharmacy and Poisons Board at the time of onboarding were eligible to participate in the

study. Additionally, they needed to be active users of the Maisha Meds digital sales and

inventory management tool, be at least 0.5 km away from other study sites,11 and be willing

to be randomized to one of the study arms.

In total, 140 pharmacies across thirteen counties in the malaria endemic and epidemic

areas of Kenya’s western regions were selected to be part of the study. Pharmacies that met

these criteria were sequentially randomly assigned to one of the four arms in waves, stratified

on average monthly malaria product sales volumes (above/below median), urban/rural, lo-

cation of pharmacy in lake endemic county, and participation in earlier pilot study phase.12

Figure 5 shows the geographic span of the experiment across the target regions in Kenya and

the final selection of pharmacies. Because interventions were randomized at the pharmacy

level, every person seeking care for suspected malaria was eligible for the same intervention.

2.4 Experiment timeline and data collection

See Table 1 for study timeline and a description of the primary sources of data.13

We use the following data sources for analysis:
11The average distance between study sites is 6.24 km (range of 0.5 km to 46.2 km).
12Randomization was done in Stata 16 by the lead investigator.
13The study was initially planned to begin in June 2020, but was delayed due to COVID-19. The research

and implementation teams followed Kenyan and UC Berkeley CPHS guidelines for conducting research
while keeping study staff, implementation staff, and study subjects safe from COVID-19. All personnel
and pharmacy staff were required to wear masks, maintain 1 meter distance from each other, and sanitize
hands frequently. The research and implementation teams provided adequate PPE and hand sanitizer for
all study and implementation personnel. Pharmacies were required by the Kenyan government to have all
staff wearing masks, and have hand washing stations for staff and pharmacy clients, and pharmacies in our
sample were compliant with these requirements during the study period. The pharmacy onboarding, patient
exit survey, standardized patient visits, and control group testing activities were all done in person following
appropriate COVID-19 precautions. The pharmacy baseline surveys were conducted over the phone.
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1. Baseline data:

(a) Pharmacy owner survey: survey about number of staff, pharmacy business opera-

tions, patient volumes, pharmacy characteristics, costs and revenues, and knowl-

edge of malaria case management.

(b) Pharmacy staff survey: survey about malaria case management knowledge, worker

motivation, and use of the digital platform used to manage sales and inventory.

2. Administrative data:

(a) Sales data: continuously collected transaction data including prices and quantities

of products purchased, location, date, and time of sale, and pharmacy staff who

made the sale for over 50,000 malaria-related patient encounters between June

2021 - February 2022.14

(b) Malaria case management data: continuously collected transaction data on all

rapid test and treatment purchases made through incentive program, including

information on age/gender of patient, rapid test result, prices and quantities of

medications purchased, location, date, and time of sale. Over 8,000 malaria trans-

actions logged between June 2021 - February 2022.

3. Patient exit survey data: survey with a random sample of 1654 eligible adult pharmacy

clients across all study sites (12.6 clients/site).15 This survey includes information on

quality of care, symptoms, prices and quantities of medications and diagnostic tests

purchased, beliefs about their illness status, malaria test result if applicable, and basic

demographics.
14Prices observed in the data are retail prices set by pharmacists in the digital tool.
15In order to be eligible, clients must have sought care for malaria symptoms for themselves or a family

member present at the pharmacy with them. Trained research staff visited each study pharmacy during an
unannounced 5 day period, and screened all patients who exhibited malaria-related symptoms or purchased
malaria products for eligibility. There were 1674 possible respondents screened, and 1654 respondents who
completed the survey.

14



4. Testing subsample data: data on test positivity from testing of random subset of 230

pharmacy clients at control group sites to obtain test positivity rate in a sample un-

affected by the interventions (8.5 clients tested/site, 28 sites participated). Additional

test positivity data from administrative records from 10 control group pharmacies that

kept records of tests conducted (N=2547) on-site between January-February 2022.

5. Endline data:

(a) Pharmacy owner survey: survey about number of staff, pharmacy business oper-

ations, patient volumes, pharmacy characteristics, costs and revenues, and altru-

istic tendencies.

(b) Pharmacy staff survey: survey on malaria case management knowledge, worker

motivation, use/familiarity with the digital platform used to manage sales and

inventory and manage malaria cases, and altruistic tendencies.

2.5 Empirical strategy

2.5.1 Take-up of the intervention

We measure trial take-up as the subset of eligible pharmacies in the study area that con-

sented to participate in the trial. The total number of eligible pharmacies in the study

catchment area was obtained from the administrative records of the implementing partner.

Each consenting pharmacy agreed to manage their sales through the digital tool, and to offer

incentives (either supply- or demand-side) for malaria testing and treatment if assigned to

one of the intervention arms.

We then determine the relationship between trial take-up and eight pharmacy-level char-

acteristics: number of months active on digital sales management tool; baseline (2019-2020)

average monthly malaria product sales, high quality malaria treatment (ACT) sales, and

rapid diagnostic test sales; participation in earlier study phase,16 urbanicity, location in a
1660 pharmacies participated in a Phase 1 of the study between November 2020-February 2021, where
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lake endemic county, and pharmacy type. In order to determine whether trial take-up is re-

lated to any of these covariates, we conduct pair-wise t-tests comparing these characteristics

across pharmacies that declined to participate and those that elected to participate.

2.5.2 Treatment effects on testing and treatment targeting

We present all results of the program impact on testing and treatment targeting in terms

of comparisons between each intervention arm and the control group (status quo pharmacy

care experience). Additionally, we discuss any significant differences between demand-side

incentives and supply-side incentives, and across all three intervention arms and compare

to the minimum detectable effects that the study was powered to detect. All analyses are

conducted at the patient level17, and an intention-to-treat (ITT) framework is used. Some

clients at intervention pharmacies refuse to purchase rapid tests and treatments through the

intervention platform (at a fixed reduced price, in T1 and T3) and will elect to make other

purchases or none. By including all eligible malaria patients in an ITT analysis, rather than

only patients who elect to take up the intervention assigned to the pharmacy, we preserve

the unbiasedness benefits of randomization. The analyses specified in this section were pre-

registered in a pre-analysis plan (AEARCTR-0004705). We discuss any deviations from the

pre-analysis plan where relevant.

For all binary outcomes, we report effects from adjusted logistic regression models using

the following regression framework.

Pr(Yip) = expit(β0 + β1T1ip + β2T2ip + β3T3ip + λs +Xp + ϵip) (1)

where Yip is a malaria testing or treatment outcome, Tjip are treatment assignment indi-

cators for each intervention j for individual i seeking care at pharmacy p, with the control

different levels of patient subsidies for malaria testing and treatment were randomized to patients. This
study phase was stopped because of insufficient take-up and operational complexity, and these sites were
balanced across treatment arms in the full study sample.

17This is equivalent to febrile illness episode level since most patients in our sample only have had one
symptomatic pharmacy visit during the study period.
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group as the reference category, λs are strata fixed effects, and ϵip is the error term. We

include variables that had significant imbalance with the control group at the 10% level or

below at baseline (Tables 2 and 3)) as covariates in this adjusted model (Xp), as specified

in the pre-analysis plan. The β terms represent the log-odds of the treatment effect of each

intervention relative to the control group, as percentage point changes. We report all results

in terms of marginal effects in relation to the control group mean. We also report p-values

from Wald tests comparing the marginal effect coefficients of the interventions to each other.

Results of unadjusted models (excluding Xp) are consistent with findings from the adjusted

models, and can be made available upon request.

In addition to looking at each intervention separately, we report results from pooling the

interventions, to measure overall impact of any incentive program on outcomes of interest.

This pooled regression specification was not pre-specified in the analysis plan, and is below:

Pr(Yip) = expit(β0 + βpooledT ip + λs +Xp + ϵip) (2)

All results are from administrative transaction data from the full sample of patients who

sought malaria care in study pharmacies, unless otherwise specified. For results that look at

treatment purchases conditional on malaria status, we conduct the analysis at the pharmacy

level because we have site-level test positivity and negativity rates for all groups. To calculate

test positivity and negativity rates, restrict the intervention-group sample to patients whose

malaria diagnosis is known because they were diagnosed through the incentives intervention.

We construct a comparison group from control group sites for this subset of patients using

test positivity data collected as part of the study by independent enumerators and pharmacy-

reported test results and imputing the share of patients who purchased ACTs at control sites

that were malaria-positive or not. More details on this imputed control group can be found

in Appendix 4.3.

The mechanisms analysis uses survey data collected from Standardized Patient visits.

We conduct analysis at the site-level for the incentive pass-through analysis because there is

17



very little within-site price variation for malaria tests and treatments during the period of

time when SPs conducted their visit. We conduct SP visit-level analysis for the information

channel, as there is sufficient variation in the SP visit experiences within pharmacies to

justify this choice.

2.5.3 Cost-effectiveness analysis

In order to analyze the efficiency of each intervention, we conduct a cost-effectiveness analysis

where the measure of interest is the incremental cost per additional patient who is appropri-

ately treated with ACTs (so, is malaria positive). We use standard formulas to calculate the

ratio of the change in benefits to the change in costs across each intervention arm compared

to the status quo. Benefits are defined as the change in patients taking ACTs appropriately

(patients must be malaria positive), and costs are defined as the sum of the incentive costs,

out of pocket costs for tests and treatment, and the direct costs of over-treating malaria

negative patients.

The final cost-benefit ratio formula used is below:

Beneficiariest −Beneficiariesc
TotalCostt − TotalCostc

where t ∈ (1, 2, 3) denotes each treatment arm and c denotes the control group (status quo).

The term Beneficiaries represents the total number of patients who take ACTs appropriately,

and the term Total Cost represents the intervention costs, out of pocket costs for tests and

treatment, and the direct costs of over-treating malaria negative patients. We estimate incre-

mental cost-effectiveness ratios (ICERs) from the perspective of the program implementer

(including only program costs) and from a societal perspective (including program costs,

costs incurred by patients for tests and treatments, and direct costs of over-treating malaria

negative individuals). Full details on the cost-effectiveness analysis, including all formulas,

assumptions, and data sources for each parameter, can be found in Appendix 4.
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2.6 Trial take-up and sample characteristics

Incentives for rapid diagnostic tests and ACTs were randomized across 140 pharmacies at

baseline, with 35 assigned to the control group (25%), 35 assigned to the patient subsidies

group (25%), 35 assigned to the pharmacy incentives group (25%), and 35 assigned to the

combined group that received both patient subsidies and pharmacy incentives (25%). Tables

2 and 3 report the experimental balance checks at baseline (for pharmacy-level variables from

the administrative data and survey data, respectively), and shows that randomization was

fairly balanced across a large set of pre-specified covariates. Out of 84 tests conducted, 8 are

significant at the 10 percent level or more. When we conduct a joint test for orthogonality

using a multinomial logit model with treatment assignment as the categorical outcome, We

find that the χ2-test produces a p-value of 0.46. This suggests that these covariates are not

jointly predictive of group assignment. In the adjusted models, we control for covariates that

were unbalanced at baseline from comparisons with the control group, consistent with the

pre-analysis plan.

We measure fidelity to implementation as whether there were any malaria transactions

logged in the digital sales tracking platform for a study pharmacy during the study period

(June 2021-February 2022). By this metric, 8 facilities out of 140 were inactive during

the study period (1 in the patient subsidy arm, 2 in the pharmacy incentive arm, 2 in the

combined arm, and 3 in the control group). For the remaining facilities, the number of

active facilities by month can be found in Figure 6, and the number of facilities actively

selling incentivized malaria tests and treatments can be found in Figure 7. The pharmacy

onboarding occurred between June-December 2021, so the increase in the number of active

facilities over this time period is due to pharmacies being onboarded to the study in a

staggered way.

Randomization was done prior to enrolling facilities in the study for sites that met all

eligibility criteria, due to operational necessity of conducting in person site visits to intro-

duce the program and the study at the same time. Appendix Table C2 reports balance
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on baseline variables obtained from the administrative data between facilities that, when

offered participation in the program and study, accepted (in sample) and those that declined

(refusals). Column 3 reports the differences between the two group means and the signifi-

cance stars from a t-test comparing the difference in group means. Facilities that declined to

participate had been using the digital sales platform for longer than facilities in the sample

frame. No other meaningful imbalances were found. Appendix Tables C3 and C4 report de-

scriptive results from regressing the primary and secondary outcomes on the sample baseline

characteristics.

3 Results

3.1 Impact on diagnosis and treatment of malaria

The intervention’s primary objective was to increase diagnostic testing uptake and improve

malaria treatment targeting among pharmacy clients with suspected malaria. So, we present

findings on these two dimensions of appropriate malaria case management in turn and explore

mechanisms.

Mean levels of rapid diagnostic test uptake in control group pharmacies are low, which

is consistent with trends found across the full pharmacy sample prior to the start of the

experiment (Appendix Figure C1) as well as with existing research on rapid diagnostic test

use in pharmacy settings across East Africa. Only 8% of patients who sought care for

malaria-related symptoms in control group pharmacies purchased a rapid diagnostic test

prior to obtaining treatment (Table 4). Overall, the incentives interventions increased rapid

diagnostic test use substantially. Patients who sought care in treatment pharmacies were

25 percentage points more likely to purchase a diagnostic test before getting treated with

antimalarials (column 1, Table 4). Looking at each incentive arm separately, as we do in

column 2, we find comparable effects across all three arms. Patient discounts alone resulted

in a 27 percentage point increase in rapid test uptake, and both pharmacy incentives and the
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combination of patient discounts and pharmacy incentives resulted in a 20 percentage point

increase, with no statistically significant difference across the three arms. So, on average

we find a more than 300% increase in the use of rapid diagnostic testing as a result of the

intervention.

Both demand- and supply-side incentives improved rapid diagnostic testing uptake, but

did they have any impact on appropriate use of antimalarials? We discuss results on treat-

ment targeting from Table 5, again looking at the pooled treatment effect and each of the

three interventions arms separately. The vast majority of control group patients who sought

care for suspected malaria purchase ACTs (87%).18 We find a significant decrease in ACT

uptake overall, of 14 percentage points on average, and between 9-15 percentage points when

looking at each incentive intervention separately (but again, the three arms are statistically

indistinguishable from each other).

When we separate this aggregate measure into its two components: ACT uptake with

an accompanying diagnostic test, and ACT uptake without an accompanying diagnostic

test, we can better understand this decline. Of the control group patients who purchased

ACTs (87%), only 6% of them did so with an accompanying diagnostic test. Across the

three intervention arms, we find a 7 percentage point increase in the share of patients who

purchased ACTs with an accompanying diagnostic test, representing a more than 200%

increase over the control group (Table 5, column 3). This increase in the share of ACTs

sold with an accompanying test is due to the increase in testing that we discussed in Table

4. However, we need to look at columns 5 and 6 in this table to understand the aggregate

decline in ACT uptake. These columns look at intervention effects on ACTs sold without an

accompanying diagnostic test. We find an average treatment effect of a 20 percentage point

decrease in ACT uptake without a diagnostic test, with the patient discount group having a

-22 percentage point treatment effect, the pharmacy incentive group having a -16 percentage

point treatment effect, and the combination of the patient discounts and pharmacy incentives
18Assuming a malaria positivity rate of 34%, derived from the random testing exercise done in the control

group, 66% of these individuals are getting ACTs unnecessarily, or 57% of the total control group sample.
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having a -18 percentage point treatment effect (again, no statistically significant difference

across the three arms). The negative treatment effects we see here reflect the fact that

patients were tested using rapid diagnostic tests (Table 4), a share of these patients received

negative test results, and crucially, they elected not to purchase ACTs upon receiving that

negative malaria diagnosis. Therefore, the overall decline in ACT uptake is driven by malaria

negative patients not purchasing ACTs inappropriately.

Table 6 answers the question: how much of the effects on ACT uptake are due to the

information provided by a diagnostic test vs. the ACT subsidy. These are not causal ITT

estimates because we use (endogenous) information about testing uptake and test results to

construct our comparison groups (including using malaria test positivity data to impute test

results for the subset of the control group that got tested). However, they provide insights

into the relative value of (a) information about one’s own malaria status, and (b) an ACT

subsidy/incentive on ACT uptake outcomes. The first two columns reproduce the main ITT

effects on ACT uptake, but do so at the pharmacy-level. Incentive interventions reduce the

share of ACTs sold by 24 percentage points on average (column 1), with patient discounts

reducing by 27 percentage points and pharmacy incentives reducing by 22 percentage points

(column 2). The rest of the table explores how much of this overall effect is due to information

provided by the RDT versus the conditional financial incentive on ACTs. In columns 3 and

4, we see that conditional on the information provided by the test (positivity and negativity

rates), the overall impact on ACT shares is diminished to about a 6 percentage point decrease

overall (4 and 8 percentage point decrease for patient and provider incentives, respectively).

Test negativity rate has a large negative impact on ACT sales, on average across treatment

groups. Columns 5 and 6 interact positivity and negativity rates with treatment status,

to explore how information affects outcomes by treatment arm. We find that the effect of

information on ACT shares is entirely driven by the information effect in pharmacies that

received incentive interventions (either patient or provider). So, the information provided by

RDTs as a result of the incentive interventions is being acted upon in subsequent treatment
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recommendations, with real impact on ACT uptake and sales. The ACT results we find

are due in large part to this information effect, with the rest of the impact driven by the

diagnosis-conditional pricing.

In order to understand the channels through which the demand- and supply-side inter-

ventions operated, we test the mechanisms of price pass-through and improved information.

Data presented in Tables 7 and 8 are from Standardized Patient (SP) visit exit surveys. SPs

conducted a total of 411 visits across 137 facilities in the study sample, with three differ-

ent SPs visiting each facility. SPs followed a uniform script for how to present a suspected

malaria case in a pharmacy setting: SPs were instructed to complain of fever, headache and

joint pains in their opening statement and then provided additional information about their

illness episode and health history if the pharmacist followed up with additional questions.

SP visits provided a unique opportunity to assess the implementation fidelity and quality

of care of the patient-provider interaction at study pharmacies. In column 1 of Table 7,

we find evidence of partial incentive pass-through for rapid diagnostic tests in the patient

discount group, but not in the supply-side incentive arms. The discount was reflected in a

43% price reduction for patients when the incentive was administered as a consumer subsidy

(which implies a price elasticity of demand of 7.86).19 This suggests that in the patient

discount arm, the increase in testing uptake and improvements in treatment targeting can

be explained by partial incentive pass-through on rapid diagnostic tests.

But, this mechanism does not appear to explain why we find similar effects in the two

supply-side incentive arms. Table 8 presents results on the pharmacist-patient interaction

using data collected from the SP exit surveys. We find no impact on the likelihood that

the SP was offered a malaria diagnostic test, but the likelihood that SPs who went to

control group pharmacies were offered a test was already quite high - 60%. This is much

higher than the full sample, and is likely due to the fact that the SPs were instructed to

present generalized symptoms and ask the pharmacist for their recommendation, rather
19Using 338% change in quantity, calculated from point estimates in Table 4
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than begin by demanding antimalarials, which is also common practice in these settings.

SPs report that between 37-45% of pharmacists in all arms, including the control group,

are knowledgeable about malaria symptoms and treatment options, so there does not seem

to be a gap in knowledge between providers as a result of the interventions. However,

there is a difference in what providers actually do. We present results on the quality of

counseling provided by pharmacists (Columns 5 and 6). In the control group, only 31% of

providers provided comprehensive counseling on treatment options. On average, we see an

11 percentage point increase in the quality of information about treatment options given

as a result of the interventions (Table 8, Column 5). This average effect is driven entirely

by the supply-side incentive arms. When pharmacists are incentivized directly, they are 16

percentage points more likely than control group pharmacists to clearly explain treatment

options to SPs. In the combined discount and incentives arm, we find a 14 percentage point

increase. This suggests that when incentivized directly, pharmacists do change their behavior

and provide more comprehensive counseling on testing and treatment options to suspected

malaria patients. We do not find any treatment effects on time spent with the pharmacist (on

average, 9-10 minutes across all arms), but find that patients in the provider arm are more

likely to report that the provider showed them their individual test results as part of their

counseling (columns 11-12). Taken together, this suggests that the information/counseling

channel, rather than a price pass-through, is likely to explain the supply-side treatment

effects we find in Tables 4 - 6.

3.2 Cost-effectiveness results

In order to compare the efficiency of each intervention, we conducted a cost-effectiveness

analysis from the perspective of the program implementer (including only program costs)

and from a societal perspective (including program cost and costs incurred by the care-

seeking patient). We estimated incremental cost-effectiveness ratios (ICERs) in terms of

cost per patient obtaining ACTs appropriately, defined as being malaria positive. We used
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a time horizon equal to the duration of the intervention period (8 months) and included

all malaria patients who sought care at study pharmacies for this analysis. All methods,

parameter inputs and assumptions are described in the methods section and Appendix 4.

Table 9 presents the incremental benefits and ICERs from the implementer perspective

(top panel) and from the societal perspective (bottom panel). Within each panel, we present

incremental gains and ICERs for each intervention (patient subsidies, pharmacy incentives,

or combined) relative to the control group, as this is the most policy-relevant benchmark

when deciding amongst these possible intervention approaches. The control group resulted in

73 appropriately targeted ACTs. Patient subsidies resulted in 180 additional appropriately

targeted ACTs at a cost of $14.30/patient, pharmacy incentives resulted in an additional

258 patients treated appropriately at a cost of $12.87/patient, and the combined approach

resulted in an additional 165 patients treated appropriately at a cost of $22.72/patient (all

from Panel A, Table 9).

From a societal perspective (Panel B, Table 9), we find that patient subsidies result in

an additional 180 patients treated appropriately with ACTs at a cost of -$57.60/patient

compared to the control group, which is cost-saving. We find that pharmacy incentives

are even more cost saving: compared to the control group, this intervention leads to 258

additional patients treated appropriately with ACTs at a cost of -$142.14/patient. And

finally, the combined intervention leads to an additional 165 ACTs targeted appropriately

compared to the control group, at a cost of $35.92/patient. These cost-effectiveness estimates

likely understate the true benefits of these interventions because they do not incorporate the

benefits incurred by malaria negative patients foregoing unnecessary antimalarials, and thus

not contributing to increased likelihood of drug-resistant mosquito strains, which are a social

cost.
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4 Discussion

We examine the effects and mechanisms of demand- and supply-side incentive programs

designed to improve malaria case management in a cluster-randomized control trial in Kenya.

The experimental treatments provided financial incentives to patients, pharmacists, or both

for rapid diagnostic tests and ACTs conditional on testing positive for malaria and were

implemented in private sector pharmacies in thirteen malaria-prone counties. Pharmacies

play a significant role in malaria case management in Kenya, and this study provides some

of the first evidence of how interventions designed and implemented in pharmacy settings

can change prescribing/purchase behavior with implications for illness management.

We find encouraging results of the demand- and supply-side incentives on both testing and

treatment targeting. Overall, the incentives interventions increased RDT use substantially

in a setting with very low baseline testing levels. On average, patients who sought care

in treatment pharmacies were 25 percentage points more likely to receive a formal malaria

diagnosis prior to purchasing treatment for suspected malaria. This represents a more than

300% increase over the control group. Incentive interventions were also effective encouraging

appropriate use of antimalarials. We find an overall 14 percentage point decrease in the use

of ACTs as a result of the treatment, and this is due to malaria negative patients opting

out of purchasing unnecessary antimalarials. For patients who test positive, we find that

they are appropriately nudged to take ACTs, consistent with their diagnostic test result.

Interestingly, we find statistically indistinguishable effects of the demand-side and supply-

side treatment arms, suggesting that incentives yield similar outcomes whether they are

provided directly to patients or they are provided to pharmacists.

We explore mechanisms through which the incentive interventions worked in order to

contextualize the main findings. We find that the patient subsidies for RDTs resulted in

significantly lower prices being paid by patients (43% reduction in price). However, we find

no evidence of pass-through of the RDT incentive in either of the two supply-side arms, and

no evidence of price pass-through on ACT prices in any of the three treatment arms. Instead,
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we find evidence that in the supply-side incentive arms, pharmacists explained diagnosis and

treatment options more comprehensively to their patients. Improved, individualized health

information appears to be the channel through which the supply-side incentives resulted in

the overall changes in RDT and ACT use seen in the main results. In sum, the demand

subsidies induced more patients to purchase RDTs that provided accurate illness status

information, which led to more appropriate use of ACTs. And, the supply incentives led

pharmacists to provide more detailed diagnosis counseling and treatment recommendations,

yielding similar results.

This study adds to the literature on how individualized health information and financial

incentives can be combined to change health behavior. Critically, this study builds on

several other field experiments that look at the effectiveness of incentives in improving uptake

of malaria diagnostic testing and treatment targeting. Cohen, Dupas and Schaner find

that subsidizing ACTs leads to significant increases in ACT uptake, but that the increased

demand comes at a cost: only about half of the subsidized ACTs are taken by malaria-

positive individuals (J. Cohen, Pascaline Dupas, and Schaner 2015). They find that a rapid

test subsidy also increases uptake of testing, but does little to improve testing targeting.

Subsequent work by Prudhomme O’Meara and colleagues in Kenya finds that providing free

rapid tests increases testing uptake, and providing subsidies for ACTs when patients test

positive increases the use of ACTs when malaria positive (O’Meara, Menya, et al. 2018). We

find results on testing uptake that are consistent with both of these studies: incentivizing

rapid tests does increase usage significantly. However, we additionally find that diagnosis

conditional incentives for ACTs improve treatment targeting. One key difference between

this study and those that came before it is that these incentive interventions are entirely

administered in pharmacies and by pharamcists, rather than using community health workers

to test and refer patients to retail outlets to purchase treatments.

This study contributes to our understanding of how incentives targeted at the demand-

side or the supply-side can affect health decision-making by comparing demand- and supply-
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side incentive approaches directly to each other. The fact that we find no significant dif-

ferences in testing uptake or treatment targeting between demand and supply approaches

suggests that targeting incentives to either patients or providers is effective at improving

malaria case management in a pharmacy setting. This is interesting from a policy and im-

plementation perspective, because it provides some evidence that incentive programs can

be applied at the level that is most operationally-feasible, with limited impact on overall

effectiveness in terms of end-user outcomes.

Finally, this study provides evidence on how pharmacists make decisions, and provides

cost-effectiveness estimates that can be used by decision-makers to compare this intervention

to others aimed at improving malaria care. Given that pharmacies play an important role in

health care provision in many low- and middle-income countries, understanding pharmacist

motivations and how interventions aimed at improving quality of care work in a pharmacy

context is a crucial policy relevant question. The fact that we find improvements in malaria

case management suggests that pharmacy-level interventions is one promising avenue to

improve quality of care.

Overall, demand and supply incentives are both effective at encouraging uptake of malaria

RDTs and improving treatment targeting in a pharmacy setting, which is characterized by

low levels of diagnostic testing and high levels of antimalarial overuse. Incentives may operate

through different channels, depending on whether they are given to patients or providers,

but yield similar outcomes in terms of quality of care. Demand incentives translate into

price reductions for patients for RDTs, and supply incentives induce pharmacists to provide

more comprehensive counseling. This research demonstrates that incentives targeted to

either patients or pharmacists can lead to improvements in malaria case management, and

that having pharmacy-level programs aimed at improving malaria care has the potential to

improve outcomes.
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Table 1: Study timeline (Back: 2.4)

Jun-Dec ’21 • Experiment launch: baseline pharmacy survey with 233
pharmacy owners and staff from all 140 sites; staggered
onboarding of 140 pharmacies to intervention and study

Aug ’21-Feb ’22 • Monitoring: implementation team monitors intervention
implementation through regular outreach calls and random site
visits; ongoing administrative data collection through digital
platform

Oct ’21-Jan ’22 • Patient exit survey: survey of random sample of 1654 adult
clients who seek care for malaria-like symptoms

Dec ’21-Feb ’22 • Standardized patient visits: 412 mystery shopper visits by
enumerators presenting as suspected malaria patients, to obtain
data on patient-pharmacist interaction, implementation fidelity,
and quality of care

Jan-Feb ’22 • Control group testing: testing of random subset of 230
pharmacy clients at control group sites to obtain test positivity
rate

Mar ’22 • Pharmacy endline survey: survey of all pharmacy staff and
owners at conclusion of the data collection period
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Table 4: Impact on rapid test uptake, adjusted logistic regression (Back: 3.1)

Rapid test uptake

(1) (2)

Pooled treatment .25∗∗

(0.051)

Patient discount .267∗

(γT1) (0.106)

Pharmacy incentive .194∗∗

(γT2) (0.065)

Patient discount and .201∗∗

pharmacy incentive (γT3) (0.054)

Control mean 0.081 0.081
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.827
Wald test p-val (γT1 ̸= γT2) 0.540
Wald test p-val (γT1 ̸= γT3) 0.606
Wald test p-val (γT2 ̸= γT3) 0.940
N 51441 51441
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales,
female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ)
between treatment arms
Denominator is all patients that purchased malaria product during study period
45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 5: Impact on ACT uptake and treatment targeting, adjusted logistic regression (Back:
3.1)

ACT uptake
ACT uptake

with test
ACT uptake
without test

(1) (2) (3) (4) (5) (6)

Pooled treatment -.139∗∗ .0748∗ -.197∗∗

(0.049) (0.034) (0.060)

Patient discount -.145∗ .072 -.218∗

(γT1) (0.069) (0.050) (0.110)

Pharmacy incentive -.0892+ .0769+ -.161∗

(γT2) (0.050) (0.045) (0.075)

Patient discount and -.136∗∗ .0511+ -.183∗∗

pharmacy incentive (γT3) (0.047) (0.029) (0.068)

Control mean 0.867 0.867 0.057 0.057 0.809 0.809
Wald test p-val (γT1 ̸= γT2 ̸= γT3) .602 0.839 0.881
Wald test p-val (γT1 ̸= γT2) 0.433 0.938 0.629
Wald test p-val (γT1 ̸= γT3) 0.904 0.710 0.782
Wald test p-val (γT2 ̸= γT3) 0.394 0.587 0.802
N 51486 51486 51486 51486 51441 51441
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales,
female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ) between treatment arms
Denominator is all patients that purchased malaria product during study period
Outcome 3: 45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 6: Impact on ACT sales by test result, pharmacy-level analysis (Back: 3.1)

Share of ACTs sold
Pharmacy-level

(1) (2) (3) (4) (5) (6)

Pooled treatment -.235∗∗ -.0643+ .0349
(0.054) (0.038) (0.047)

Patient discount -.27∗∗ -.0377 .0643
(0.064) (0.045) (0.065)

Pharmacy incentive -.217∗∗ -.0762+ .0245
(0.057) (0.039) (0.050)

Test positivity rate -.108 -.0948 .0917 .0986
(0.091) (0.092) (0.733) (0.736)

Test negativity rate -.756∗∗ -.77∗∗ -.101 -.102
(0.058) (0.059) (0.189) (0.190)

Pooled × Positivity rate -.192
(0.736)

Pooled × Negativity rate -.711∗∗

(0.196)

Patient discount × Positivity rate -.166
(0.760)

Pharmacy incentive × Positivity rate -.186
(0.741)

Patient discount × Negativity rate -.72∗∗

(0.212)

Pharmacy incentive × Negativity rate -.732∗∗

(0.202)

Control mean 0.891 0.891 0.891 0.891 0.891 0.891
Positivity rate, overall 0.127 0.127 0.127 0.127
Positivity rate, Patient discount 0.10 0.10 0.10 0.10
Positivity rate, Pharmacy incentive 0.141 0.141 0.141 0.141
Negativity rate, overall 0.342 0.342 0.342 0.342
Negativity rate, Patient discount 0.422 0.422 0.422 0.422
Negativity rate, Pharmacy incentive 0.302 0.302 0.302 0.302
N 132 132 132 132 132 132
Controls: months active on platform, baseline malaria sales, female owner
Wald test comparisons were conducted of difference in marginal effects (γ) between patient
and provider treatment arms. No significant differences were found.
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table 7: Evidence of incentive pass-through, SP visits (Back: 3.1)

Log price of
rapid test

(1)

Patient discount -.427∗

(0.174)

Pharmacy incentive -.0273
(0.094)

Patient discount and -.0895
pharmacy incentive (0.095)

Control group mean (KSH) 48.952
Wald test p-val (γT1 ̸= γT2 ̸= γT3) <0.001
Wald test p-val (γT1 ̸= γT2) <0.001
Wald test p-val (γT1 ̸= γT3) <0.001
Wald test p-val (γT2 ̸= γT3) <0.001
N 137
Wald test comparisons of difference in marginal effects (γ) between treatment arms
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01

40



Ta
bl

e
8:

E
vi

de
nc

e
on

qu
al

ity
of

ca
re

,S
P

vi
si

ts
(B

ac
k:

3.
1)

M
al

ar
ia

te
st

off
er

ed

P
ha

rm
ac

is
t

w
as

kn
ow

le
dg

ea
bl

e

P
ha

rm
ac

is
t

ex
pa

in
ed

tr
ea

tm
en

t

M
in

ut
es

sp
en

t
w

it
h

ph
ar

m
ac

is
t

Sa
w

m
al

ar
ia

te
st

re
su

lt
s

(f
ul

ls
am

pl
e)

Sa
w

m
al

ar
ia

te
st

re
su

lt
s

(t
es

te
d

sa
m

pl
e)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

P
oo

le
d

tr
ea

tm
en

t
.0

36
1

.0
66

3
.1

11
∗

.8
4

.0
72

1
.1

01
(0

.0
66

)
(0

.0
62

)
(0

.0
56

)
(0

.9
74

)
(0

.0
58

)
(0

.0
73

)

P
at

ie
nt

di
sc

ou
nt

.0
80

5
.0

83
6

.0
35

3
.7

95
.0

58
3

.0
44

2
(0

.0
70

)
(0

.0
81

)
(0

.0
69

)
(1

.1
57

)
(0

.0
68

)
(0

.0
91

)

P
ha

rm
ac

y
in

ce
nt

iv
e

.0
21

4
.0

83
4

.1
62

∗
.6

24
.1

24
.1

87
∗

(0
.0

84
)

(0
.0

79
)

(0
.0

69
)

(1
.1

20
)

(0
.0

78
)

(0
.0

89
)

P
at

ie
nt

di
sc

ou
nt

an
d

.0
05

72
.0

30
3

.1
35

+
1.

11
.0

32
.0

65
9

ph
ar

m
ac

y
in

ce
nt

iv
e

(0
.0

84
)

(0
.0

73
)

(0
.0

69
)

(1
.3

08
)

(0
.0

72
)

(0
.0

88
)

C
on

tr
ol

m
ea

n
0.

60
0

0.
60

0
0.

37
1

0.
37

1
0.

31
4

0.
31

4
8.

97
1

8.
97

1
0.

30
5

0.
30

5
0.

50
8

0.
50

8
W

al
d

te
st

p-
va

l(
γ
T
1
̸=

γ
T
2
̸=

γ
T
3
)

.5
17

.7
29

.1
69

.9
26

.5
27

.2
51

W
al

d
te

st
p-

va
l(
γ
T
1
̸=

γ
T
2
)

.4
15

.9
98

.0
75

.8
73

.4
08

.1
33

W
al

d
te

st
p-

va
l(
γ
T
1
̸=

γ
T
3
)

.3
12

.5
08

.1
57

.8
02

.7
21

.8
13

W
al

d
te

st
p-

va
l(
γ
T
2
̸=

γ
T
3
)

.8
57

.5
01

.6
95

.6
95

.2
67

.1
71

N
41

1
41

1
41

1
41

1
41

1
41

1
41

1
41

1
41

1
41

1
25

9
25

9
St

an
da

rd
er

ro
rs

ar
e

cl
us

te
re

d
at

th
e

fa
ci

lit
y

le
ve

l
R

eg
re

ss
io

ns
co

nt
ro

lf
or

m
ys

te
ry

cl
ie

nt
fix

ed
eff

ec
t

F
te

st
co

m
pa

ri
so

ns
of

di
ffe

re
nc

e
in

eff
ec

ts
be

tw
ee

n
tr

ea
tm

en
t

ar
m

s
+
p
<

0.
1,

∗
p
<

0.
05

,∗
∗
p
<

0.
01

41



Table 9: Incremental Benefits and ICERs (Back: 3.2)
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Figures

Figure 1: Types of errors (Back: 2)

Figure 2: Patient decision to test and treat (Back: 2.1)
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Figure 3: Malaria zones in Kenya, source: Maraka et al. 2020 (Back: ??)
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Figure 4: Study flow diagram (Back: 2.2)
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Figure 5: Map of study sites (Back: 2.3)
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Figure 6: Active facilities during study period (all transactions) (Back: 2.6)
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Figure 7: Active treatment facilities during study period (incentivized transactions) (Back:
2.6)
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Appendix A. Cost-effectiveness Analysis Supplement

4.1 CEA Methods

Benefits are measured as patients who take ACTs appropriately (are malaria positive), there-
fore only patients who are malaria positive contribute to the benefits. To estimate the number
of patients who get ACTs appropriately in each of the intervention arms, we use the following
equation:

Beneficiariest = Pr(ACT |positive)t × ACTt

where Pr(ACT |positive)t is the probability of purchasing an ACT conditional on being
malaria positive, for each intervention arm t, and ACTt is the number of patients in in-
tervention arm t who purchase ACTs. This is the share of patients who purchase ACTs,20

multiplied by a hypothetical cohort of 10,000 patients. Pr(ACT |positive)t can be further
expanded into a component that applies to patients who were tested for malaria and one
that applies to patients who were not tested:

Pr(ACT |positive)t = Pr(ACT |positive&tested)tPr(positive|tested)tPr(tested)t+

Pr(ACT |positive&untested)tPr(positive|untested)tPr(untested)t

Each of these probabilities can be found from the parameters that are measured through
the experimental design and data collection activities. Pr(ACT |positive&tested) is di-
rectly estimated from the administrative data in the treatment groups, for patients ac-
cessing incentivized tests and treatments. In the control group, this probability is es-
timated using the control group mean from column 4 of Table 5 (0.057) multiplied by
the control group Pr(positive|tested). Pr(positive|tested) is obtained from administra-
tive pharmacy data in all four arms. In the control group, this comes from aggregate
reported test positivity rates from 2547 tests done in 10 control group sites that con-
ducted testing between January-February 2022 and kept records. In the treatment groups,
this comes from the administrative data collected through the study on individual test re-
sults, for patients who tested through the intervention. Pr(tested) is directly estimated
from the administrative data in all four arms, and is the treatment arm specific mean
in column 2 of Table 4. Pr(ACT |positive&untested) is estimated for all four arms and
is the treatment group specific means of Pr(ACT |untested) from column 6 in Table 5

20Obtained from intervention group specific means from Table 5, column 2.

49



multiplied by Pr(positive|untested). Pr(positive|untested) is estimated in the control
group using data collected from the lab tech activity which tested a random subset of
230 patients who purchased antimalarials for a suspected illness at 28 control group sites
but did not get tested prior between January-February 2022. In the treatment groups,
Pr(positive|untested) = Pr(positive)− Pr(positive|tested). Pr(positive) is the unselected
(for testing) malaria positivity rate, and is obtained from the control group testing data
(Pr(positive|tested) + Pr(positive|untested)), and Pr(positive|tested) is directly obtained
from the administrative transaction data for patients who purchased incentivized tests.

The inputs needed to calculate the number of beneficiaries in each intervention arm can
be found in Appendix Table A1. We estimate the program benefits for each intervention
using these parameters and compare them to the status quo standard of care, as well as to
the next best alternative. For details on the sources of each parameter input for the benefits,
please see Appendix Tables A2 and A3. For details on formulas used to calculate the benefits
estimates, please see Appendix Table A4.

The costs can be broken down into direct costs of running the incentives program, the
direct costs of over-treating malaria negative patients, and other non-programmatic costs
to patients of participating in the program. To estimate these costs, we use the following
equation:

TotalCostt = ctPatientst + CostOverTxt × PatientsOverTxt + CostTimet

where t ∈ (0, 1, 2, 3) is one of the three treatment arms or control group, c is the cost of
administering the incentive interventions, Patients is the number of patients who purchased
an incentivized product, CostOverTx is the cost of over-treating malaria negative patients
with antimalarials, PatientsOverTx is the number of patients who were treated unnecessar-
ily, and CostT ime is the time cost to patients of obtaining care for their malaria symptoms
in the pharmacy setting.

In order to estimate the costs of over-treating malaria negative patients, we first esti-
mate the average cost of treatment for patients who did not get tested for malaria and the
average cost of treatment for patients who did get tested for malaria. These cost estimates
are directly observed from the administrative data, and we have estimates for each of these
out of pocket costs for each of my intervention arms. Then we also observe the number
of untested patients and number of tested patients in each treatment arm, again from the
administrative data. We estimate the likelihood of being malaria negative condition on be-
ing untested, and the likelihood of being malaria negative conditional on being tested in
each treatment arm. We use parameter estimates obtained from data collection activities
for these probabilities. Pr(negative|untested) is estimated in the control group using data
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collected from the lab tech activity which tested a random subset of 230 patients who pur-
chased antimalarials for a suspected illness at 28 control group sites but did not get tested
prior between January-February 2022. Pr(negative|tested) is obtained in the control group
from aggregate reported test positivity rates from 2547 tests done in 10 control group sites
that conducted testing between January-February 2022 and kept records. In the treatment
groups, Pr(negative|untested) = Pr(negative)− Pr(negative|tested). Pr(negative) is the
unselected (for testing) malaria negativity rate, and is obtained from the control group testing
data (1 − (Pr(positive|tested)|Pr(positive|untested))), and Pr(negative|tested) is directly
obtained from the administrative transaction data from patients who purchased incentivized
tests.

Finally, we calculate the time cost to patients of obtaining care for their malaria symptoms
in the pharmacy setting. This is relevant because patients may experience longer visit times
if they elect to be tested for malaria, which may affect their decision. We obtain estimates of
total time spent at pharmacy seeking care from the patient exit survey data (in minutes) for
each intervention arm, and multiply that by an estimate of the local hourly wage to obtain
a monetary measure of the time cost for care-seeking.

The inputs needed to calculate all cost parameters can be found in Apppendix Table A1.
For details on the sources of each parameter input for the costs, please see Appendix Tables
A2 and A3. For details on formulas used to calculate the cost estimates, please see Appendix
Table A4.

4.2 CEA Results

Below are details on calculating the benefits and costs that informed the final ICERs pre-
sented in the main text.

4.2.1 Benefits

In the control group, the probability of taking an ACT conditional on being malaria positive is
< 1%, in each intervention arm this probability is 3.5%, 4.3% and 3.3% in the patient subsidy
group (T1), pharmacy incentives group (T2), and the combined group (T3), respectively.
The total number of beneficiaries in each arm are 73, 253, 331, and 238 in the control group,
T1, T2, and T3, respectively (assuming a hypothetical cohort of 10000 suspected malaria
patients who sought care in each arm). These estimates can be found in the top panel of
Table A5.
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4.2.2 Costs

In the control group, the total implementation cost is $0, because there is no programmatic
cost of administering any incentive interventions. The costs for the intervention arms are
$2,574.00, $3,320.00 and $3,748.00 in T1, T2, and T3 respectively. These cost differences
are due to the differential take up of incentivized rapid tests and ACTs in each intervention
arm, with the combined arm having the largest share of patients purchasing incentivized
rapid tests driving most of this difference. These cost estimates can be found in the bottom
panel of Table A5.

For the societal perspective, we also include the direct medication costs of over-treating
malaria negative patients in each of the intervention arms, and the time costs to patients
for seeking malaria care at pharmacies in each of the intervention arms in addition to the
program implementation costs. In the control group, the total social costs are $374,594, and
the societal costs for the intervention arms are $364,226, $337,921, and $380,520 in T1, T2
and T3 respectively. The cost differences are due to differential take up of incentivized rapid
tests and ACTs in each intervention arm, the arm-specific malaria test negativity rate, which
is highest in the combined arm, and the share of malaria negative patients who purchase
antimalarials unnecessarily. These cost estimates can be found in the bottom panel of Table
A5.

Table A6 presents the incremental cost of each intervention relative to the next less
expensive alternative. From the implementer perspective (Maisha Meds’s perspective), the
incremental costs are relatively small, since the incentive amounts are modest. The control
group (status quo) is the cheapest alternative, and the combined arm is the most expensive.
From a societal perspective, both patient subsidies and pharmacy incentives are cost-saving
interventions relative to the control group because of the lower costs incurred from fewer
malaria negative patients being treated unnecessarily and lower time costs of care-seeking
due to lower patient volumes. The combined arm is the most expensive from a societal
perspective, because of the larger time cost to patients seeking care, relative to the control
group.

4.3 CEA Tables
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Table A2: CEA Probability Inputs - sources

SOURCES

P(tested) Intervention group means from Table 4, column 2
for all 4 arms

P(untested) 1 - P(tested)
P(malaria positive | tested) Control group: administrative data from pharma-

cies on positivity rates (8 sites), positivity rates
from random testing activity multiplied by share
tested (19 sites); Treatment groups: test positivity
rates from administrative transaction data of pa-
tients accessing tests through interventions.

P(malaria positive | untested) Control group: lab tech testing random sub-
set of control group patients; Treatment groups:
P(malaria positive) from control group (unselected
positivity rate); P(positive | tested), obtained from
administrative transaction data as described above,
P(malaria positive | untested) = P(malaria posi-
tive) - P(malaria positive | tested)

P(malaria positive) P(malaria positive | tested) + P(malaria positive |
untested) obtained from lab tech activity in control
group, applied to all groups (base malaria positivity
rate)

P(ACT | malaria positive & tested) Control group mean from Table 5 column 4 *
P(malaria positive | tested); Treatment group
means from administrative transaction data for pa-
tients accessing incentivized tests and treatments

P(ACT | malaria positive & untested) Group means from Table 5 column 6 * P(malaria
positive | untested), for all 4 arms

P(malaria negative | untested) Calculated directly from P(malaria negative) -
P(malaria negative | tested) for all groups

P(malaria negative | tested) Control group: lab tech testing random sub-
set of control group patients; Treatment groups:
P(malaria negative) from control group (unselected
negativity rate); P(negative | tested), obtained from
administrative transaction data as described above,
P(malaria negative | untested) = P(malaria nega-
tive) - P(malaria negative | tested)
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Table A3: CEA Additional Inputs - sources

SOURCES

Number of patients who purchased ACTs Intervention group means from Table 5 column 2;
multiplied by 10000 hypothetical cohort

Incentive unit cost (RDT) ($) Table C1; transaction completion incentives in T2
& T3 are included

Number of patients purchasing incentivized RDTs Share from Administrative data (positive_rdt);
multiplied by 10000 hypothetical cohort

Incentive unit cost (ACT) ($) Table C1
Number of patients purchasing incentivized ACTs Share from Administrative data (act_purchased);

multiplied by 10000 hypothetical cohort
Average antimalarial treatment unit cost ($), untested Administrative data (cost_malaria_products if

rest_rdt_sales==0)
Number of untested patients Inervention group means from Table 4, column 2;

multiplied by 10000 hypothetical cohort
Average antimalarial treatment unit cost ($), tested Administrative data (cost_malaria_products if

rest_rdt_sales==1)
Number of tested patients Inervention group means from Table 4, column 2;

multiplied by 10000 hypothetical cohort
Time cost of seeking care Mean time (mins) spent with provider

by treatment arm, from patient survey
(s4_a7_prov_treat_min)

Hourly wage ($) Kenya Continuous Household Survey Program 2020
Number of patients who accessed care Fixed at 10000 hypothetical cohort across all arms
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Table A4: CEA Benefits and Cost Estimates - formulas

FORMULAS

P(ACT | malaria positive) P(ACT | malaria positive ) = P(ACT |
malaria positive & tested)P(malaria posi-
tive | tested)P(tested) + P(ACT | malaria
positive & untested)P(malaria positive |
untested)P(untested)

Number of patients taking ACTs Administrative data (act_sales)
Number of beneficiaries P(ACT | malaria positive)*Number of ben-

eficiaries

FORMULAS

Total cost of incentives (RDT incentive*number of patients getting
RDT) +(ACT incentive*number of patients
getting incentivized ACT)

Total cost of over-treating malaria negative patients P(malaria negative | untested)*number of
untested patients purchasing antimalar-
ials*cost of antimalarial treatment for
untested patients + P(malaria negative |
tested)*number of tested patients purchas-
ing antimalarials*cost of antimalarial treat-
ment for tested patients

Total time cost to patients seeking care Number of malaria patients*average time
spent with provider*average hourly wage

Total costs - societal perspective Total cost of incentives + Total cost of over-
treating malaria negative patients + Total
time cost to patients seeking care

Total costs - implementer perspective Total cost of incentives
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Table A5: Benefits and Costs Estimates

Control
(status quo)

Patient
subsidies

Provider
incentives

Hybrid

BENEFITS

P(ACT | malaria positive) 0.008 0.035 0.043 0.033
Number of patients taking ACTs 8670 7220 7778 7310
Number of beneficiaries 73 253 331 238

COSTS

Total cost of incentives $0.00 $2,574.00 $3,320.00 $3,748.00
Cost of over-treating malaria negative patients $13,753.75 $7,392.35 $7,941.13 $9,012.15
Total time cost to patients seeking care $360,840.00 $354,260.00 $326,660.00 $367,760.00
Total costs - societal perspective $374,593.75 $364,226.35 $337,921.13 $380,520.15
Total costs - implementer perspective $0.00 $2,574.00 $3,320.00 $3,748.00

Table A6: Incremental Costs

Implementer perspective
Costs Inc. cost

Control (status quo) $0.00 -
TI - Patient subsidies $2,574.00 $2,574.00
T2 - Provider incentives $3,320.00 $746.00
T3 - Hybrid $3,748.00 $428.00

Societal perspective
Costs Inc. cost

T2 - Provider incentives $337,921.13 -
T1 - Patient subsidies $364,226.35 $26,305.22
Control (status quo) $374,593.75 $10,367.40
T3 - Hybrid $380,520.15 $5,926.40

Implementer perspective includes only incentive costs.
Societal perspective includes incentive costs, costs of
overtreating malaria negative patients, and time costs.
Incremental cost = incremental cost relative to next
most expensive alternative.
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Appendix B. Simulated control group detail

Table 6 presents results on treatment purchase conditional on patients having tested positive
or negative fo malaria. In the intervention arms (T1, T2, T3), test positivity is observed
directly from transaction records for patients that tested for malaria using the incentivized
rapid tests. In these arms, we restrict our sample to this subset of patients. In the control
group, we do not observe test positivity for individual patients. In the transaction data,
we do observe whether clients purchased a rapid test and what their treatment choice was.
From administrative aggregate testing records provided by a subset of control group sites
that keep records on malaria positivity rates, we know that 24% of tests came back positive
between January - February 2022. We use this test positivity rate, combined with the test
positivity rate obtained from an independent random testing exercise of a subset of patients
seeking care in control group sites, to simulate a control group subset that received a positive
diagnosis and one that received a negative diagnosis, and use each of these simulated control
groups as the comparison sample with the respective malaria-positive (malaria-negative)
sample in the intervention arms.

Appendix C. Supplementary Tables and Figures

4.4 Appendix Tables and Figures

Figure C1: Malaria sales, seasonal trends (Back: 3.1)
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Table C3: Primary outcomes regressed on baseline characteristics (Back: 2.6)

(1) (2) (3)

Rapid test uptake
ACT uptake

with test
ACT uptake
without test

Months .00143 .00197+ -.00104
on sales management tool (0.002) (0.001) (0.002)

Below median baseline .194∗∗ .0369 -.155∗

malaria sales (0.066) (0.034) (0.064)

Average monthly -.000374 -.000687 -.00552∗

malaria sales, 2019-2020 (0.001) (0.000) (0.002)

Average monthly -.00211+ -.000573 .00812∗∗

ACT sales, 2019-2020 (0.001) (0.001) (0.003)

Average monthly .0157∗∗ .0095∗∗ -.0119∗∗

rapid test sales, 2019-2020 (0.003) (0.002) (0.003)

Site was in earlier -.00984 -.00811 .0372
pilot study phase (0.052) (0.036) (0.055)

Site is in an urban .0183 .0105 .0195
area (0.054) (0.026) (0.054)

Site is in a malaria .0729 .0648∗∗ -.105
endemic county (0.073) (0.024) (0.073)

Site does not have .673∗∗ .224∗∗ -.652∗∗

clinical capabilities (0.050) (0.071) (0.046)

% of staff .147+ .0561 -.154∗

who are female (0.078) (0.039) (0.075)

Age of pharmacy .00767∗∗ .00261∗ -.00754∗

owner (0.003) (0.001) (0.003)

Average age of .000397 .000689 -.00217
pharmacy staff (0.006) (0.002) (0.005)

Female owner -.202∗∗ -.0851∗ .182∗∗

(0.063) (0.033) (0.063)

Number of staff .053 .0383 -.0728
(0.060) (0.029) (0.059)

N 51486 51486 51486
Linear probability models for primary outcomes on baseline characteristics
Standard errors are clustered at the facility level
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table C4: Secondary outcomes regressed on baseline characteristics (Back: 2.6)

(1) (2) (3)
Antimalarial
uptake overall

ACT uptake
overall

ACT uptake w/ test,
ACT sales

Months .000965 .000923 .00249
active on sales management tool (0.002) (0.002) (0.002)

Below median baseline -.00931 -.118∗ .112∗

malaria sales (0.029) (0.051) (0.053)

Average monthly -.00297∗∗ -.00621∗∗ .0000527
malaria sales, 2019-2020 (0.001) (0.002) (0.001)

Average monthly .00373∗∗ .00754∗∗ -.00211+

ACT sales, 2019-2020 (0.001) (0.002) (0.001)

Average monthly .00364∗ -.00239 .014∗∗

rapid test sales, 2019-2020 (0.002) (0.002) (0.003)

Site was in earlier -.0218 .0291 .000996
pilot study phase (0.039) (0.045) (0.050)

Site is in an urban -.0373+ .03 .0146
area (0.022) (0.040) (0.043)

Site is in a malaria .114∗∗ -.0399 .111∗

endemic county (0.025) (0.064) (0.049)

Site is does not have .177∗ -.428∗∗ .738∗∗

clinical capabilities (0.080) (0.088) (0.044)

% of staff -.0224 -.0976+ .115+

who are female (0.025) (0.050) (0.061)

Age of pharmacy .00336∗∗ -.00493+ .00765∗

owner (0.001) (0.003) (0.003)

Average age of -.00212 -.00148 -.000143
pharmacy staff (0.002) (0.004) (0.004)

Female owner .0884∗ .0974∗ -.164∗∗

(0.034) (0.042) (0.054)

Number of staff .038+ -.0345 .038
(0.022) (0.041) (0.047)

N 265610 51486 40261
Linear probability models for secondary outcomes on baseline characteristics
Standard errors are clustered at the facility level
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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Table C5: Impact on antimalarial uptake, adjusted logistic regression models (Back: 3.1)

Antimalarial
sales

overall

Non-ACT
sales

overall

(1) (2) (3) (4)

Pooled treatment .000427 -.000289
(0.023) (0.003)

Patient discount .0259 -.00157
(γT1) (0.025) (0.005)

Pharmacy incentive -.00873 -.00444
(γT2) (0.032) (0.004)

Patient discount and -.00655 .00308
pharmacy incentive (γT3) (0.027) (0.005)

Control mean 0.197 0.197 0.022 0.022
Wald test p-val (γT1 ̸= γT2 ̸= γT3) 0.231 0.426
Wald test p-val (γT1 ̸= γT2) 0.156 0.544
Wald test p-val (γT1 ̸= γT3) 0.202 0.471
Wald test p-val (γT2 ̸= γT3) 0.943 0.200
N 265610 265610 258765 258765
Standard errors are clustered at the facility level
Controls: months active on platform, baseline malaria sales, female owner, strata and calendar month FE
Wald test comparisons of difference in marginal effects (γ) between treatment arms
Denominator is all patients that purchased malaria product during study period
Outcome 3: 45 obs dropped b/c multicollinearity (strata 11)
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01
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